python画正态函数 python中正态分布函数怎么输

如何使用python的matplotlib画正弦函数图像使用python的matplotlib画正弦函数图像 , 还要用到numpy库,代码如下9行所示:
import numpy as np;
from matplotlib import pyplot as plt;
【python画正态函数 python中正态分布函数怎么输】fig = plt.figure();
ax2= fig.add_subplot(111);
x=np.arange(0,100)/10;
y=np.sin(x);
ax2.plot(x,y);
plt.savefig('sine.png');
plt.show();
python pandas 怎么生成正态分布的图高斯分布是从负无穷到正无穷的.能限制住就不是高斯分布了.或者你做个近似的,函数生成的数值如果不在[0,1],就重新随机一次
不能直接写出函数的表达式 怎么在python里画函数图象呢?不写出y=f(x)这样python画正态函数的表达式python画正态函数,由隐函数python画正态函数的等式直接绘制图像 , 以x2 y2 xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2 y**2 x*y-1);
统计学入门级:常见概率分布 python绘制分布图 如果随机变量X的所有取值都可以逐个列举出来 , 则称X为离散型随机变量 。相应的概率分布有二项分布 , 泊松分布 。
如果随机变量X的所有取值无法逐个列举出来,而是取数轴上某一区间内的任一点,则称X为连续型随机变量 。相应的概率分布有正态分布,均匀分布 , 指数分布 , 伽马分布 , 偏态分布,卡方分布,beta分布等 。(真多分布 , 好恐怖~~)
在离散型随机变量X的一切可能值中 , 各可能值与其对应概率的乘积之和称为该随机变量X的期望值 , 记作E(X)。比如有随机变量,取值依次为:2,2,2,4,5 。求其平均值:(2 2 2 4 5)/5 = 3 。
期望值也就是该随机变量总体的均值 。推导过程如下:
= (2 2 2 4 5)/5
= 1/5 2 34/55/5
= 3/5 21/5 41/5 5
= 0.6 20.2 40.2 5
= 60% 220% 420%*5
= 1.20.81
= 3
倒数第三步可以解释为值为2的数字出现的概率为60%,4的概率为20%,5的概率为20% 。所以E(X) = 60% 220% 420%*5 = μ = 3 。
0-1分布(两点分布),它的随机变量的取值为1或0 。即离散型随机变量X的概率分布为:P{X=0} = 1-p, P{X=1} = p,即:
则称随机变量X服从参数为p的0-1分布,记作X~B(1,p) 。
在生活中有很多例子服从两点分布,比如投资是否中标,新生婴儿是男孩还是女孩,检查产品是否合格等等 。
大家非常熟悉的抛硬币试验对应的分布就是二项分布 。抛硬币试验要么出现正面,要么就是反面,只包含这两个结果 。出现正面的次数是一个随机变量,这种随机变量所服从的概率分布通常称为 二项分布。
像抛硬币这类试验所具有的共同性质总结如下:(以抛硬币为例)
通常称具有上述特征的n次重复独立试验为n重伯努利试验 。简称伯努利试验或伯努利试验概型 。特别地,当试验次数为1时,二项分布服从0-1分布(两点分布) 。
举个栗子:抛3次均匀的硬币,求结果出现有2个正面的概率。
已知p = 0.5 (出现正面的概率) ,n = 3,k = 2
所以抛3次均匀的硬币,求结果出现有2个正面的概率为3/8 。
二项分布的期望值和方差 分别为:
泊松分布是用来描述在一 指定时间范围内或在指定的面积或体积之内某一事件出现的次数的分布。生活中服从泊松分布的例子比如有每天房产中介接待的客户数,某微博每月出现服务器瘫痪的次数等等 。泊松分布的公式为 :
其中 λ 为给定的时间间隔内事件的平均数,λ = np 。e为一个数学常数,一个无限不循环小数,其值约为2.71828 。
泊松分布的期望值和方差 分别为:
使用Python绘制泊松分布的概率分布图:
因为连续型随机变量可以取某一区间或整个实数轴上的任意一个值,所以通常用一个函数f(x)来表示连续型随机变量,而f(x)就称为 概率密度函数。
概率密度函数f(x)具有如下性质 :
需要注意的是,f(x)不是一个概率,即f(x)≠ P(X = x)。在连续分布的情况下,随机变量X在a与b之间的概率可以写成:
正态分布(或高斯分布)是连续型随机变量的最重要也是最常见的分布 , 比如学生的考试成绩就呈现出正态分布的特征 , 大部分成绩集中在某个范围(比如60-80分),很小一部分往两端倾斜(比如50分以下和90多分以上) 。还有人的身高等等 。
正态分布的定义 :
如果随机变量X的概率密度为( -∞x ∞):
则称X服从正态分布,记作X~N(μ,σ2) 。其中-∞μ ∞,σ0,μ为随机变量X的均值 , σ为随机变量X的标准差 。正态分布的分布函数
正态分布的图形特点 :
使用Python绘制正态分布的概率分布图:
正态分布有一个3σ准则 , 即数值分布在(μ-σ,μ σ)中的概率为0.6827,分布在(μ-2σ,μ 2σ)中的概率为0.9545,分布在(μ-3σ,μ 3σ)中的概率为0.9973,也就是说大部分数值是分布在(μ-3σ,μ 3σ)区间内 , 超出这个范围的可能性很小很小 , 仅占不到0.3%,属于极个别的小概率事件,所以3σ准则可以用来检测异常值 。
当μ=0,σ=1时,有
此时的正态分布N(0,1) 称为标准正态分布 。因为μ,σ都是确定的取值 , 所以其对应的概率密度曲线是一条 形态固定 的曲线 。
对标准正态分布,通常用φ(x)表示概率密度函数,用Φ(x)表示分布函数:
假设有一次物理考试特别难,满分100分,全班只有大概20个人及格 。与此同时语文考试很简单 , 全班绝大部分都考了90分以上 。小明的物理和语文分别考了60分和80分 , 他回家后告诉家长 , 这时家长能仅仅从两科科目的分值直接判断出这次小明的语文成绩要比物理好很多吗?如果不能,应该如何判断呢?此时Z-score就派上用场了 。Z-Score的计算定义 :
即 将随机变量X先减去总体样本均值,再除以总体样本标准差就得到标准分数啦 。如果X低于平均值,则Z为负数,反之为正数。通过计算标准分数,可以将任何一个一般的正态分布转化为标准正态分布 。
小明家长从老师那得知物理的全班平均成绩为40分,标准差为10,而语文的平均成绩为92分 , 标准差为4 。分别计算两科成绩的标准分数:
物理:标准分数 = (60-40)/10 = 2
语文:标准分数 = (85-95)/4 = -2.5
从计算结果来看,说明这次考试小明的物理成绩在全部同学中算是考得很不错的,而语文考得很差 。
指数分布可能容易和前面的泊松分布混淆,泊松分布强调的是某段时间内随机事件发生的次数的概率分布 , 而指数分布说的是 随机事件发生的时间间隔 的概率分布 。比如一班地铁进站的间隔时间 。如果随机变量X的概率密度为:
则称X服从指数分布,其中的参数λ0 。对应的分布函数 为:
均匀分布的期望值和方差 分别为:
使用Python绘制指数分布的概率分布图:
均匀分布有两种,分为 离散型均匀分布和连续型均匀分布。其中离散型均匀分布最常见的例子就是抛掷骰子啦 。抛掷骰子出现的点数就是一个离散型随机变量,点数可能有1 , 2,3,4,5,6 。每个数出现的概率都是1/6 。
设连续型随机变量X具有概率密度函数:
则称X服从区间(a,b)上的均匀分布 。X在等长度的子区间内取值的概率相同 。对应的分布函数为:
f(x)和F(x)的图形分别如下图所示:
均匀分布的期望值和方差 分别为:
如何将已知数据用python写成正态分布并且画图import numpy as np
import matplotlib.pyplot as plt
y = [2,5,7,10,16,23,20,16,9,6,6,3,1,1]
x = [59,60,61,62,63,64,65,66,67,68,69,70,71,72]
fig, ax = plt.subplots()
ax.bar(x, y, 0.3,alpha=0.5, color='b',label='abc')
plt.axis([55,75,0,25])
ax.set_xlabel('XXX')
ax.set_ylabel('YYY')
ax.set_title('ABC')
ax.legend()
fig.tight_layout()
plt.show()
python:5种正态性检验方法1.直方图
由于正态分布具有非常典型python画正态函数的中间高,两边低python画正态函数的图形特征,如果样本数据并不服从正态分布,python画正态函数我们可以通过直方图很快地分辨出来 。更进一步地,Python可以辅助生成基于样本数据估计的正态曲线 , 这样就容易辅助python画正态函数我们进行判断 。
图形观察虽然直观,但是部分研究者认为单纯观察图形过于主观,因此我们也可以选择使用统计检验的方法去研究数据是否服从正态分布 。
操作步骤:
导入相关的包及数据
2 P-P图及Q-Q图
直方图是最长用于观察数据分布的常用图形选项,尤其是带正态曲线的直方图,可以非常直观地看到实际数据分布和正态曲线的对比,而P-P图及Q-Q图则是另一种选择,它可以直观给出实际数据分布和理论的差距 。
值得注意的是,虽然P-P图及Q-Q图常用用于判断数据样本是否服从正态分布,但实际上它们也能判断数据样本是否服从其他的分布
P-P图:反映的是数据的实际累积概率与假定所服从分布的理论累积概率的符合程度 。在此处,我们所假定的分布就是正态分布,如果数据样本是服从正态分布的话,那么实际的累积概率与理论的累积概率应该是相对一致的,放映在图形中就是数据点应该沿着图形的对角线分布 。
Q-Q图的原理与P-P图几乎一致 。P-P图考察的是实际分布与理论分布的累积概率分布差异,而Q-Q图考察的是实际百分位数与理论百分位数的差异 。同理在此处,我们所假定的分布就是正态分布,如果数据样本是服从正态分布的话,那么实际的分布应该是相对一致的,反映在图形中就是数据点应该沿着图形的对角线分布 。
在Python中,statsmodels包中目前主要提供的是Q-Q图的绘制
柯尔莫戈洛夫-斯米诺夫检验(Kolmogorov-Smirnov test),一般又称K-S检验,是一种基于累计分布函数的非参数检验,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同 。
K-S检验的原假设是“样本数据来自的分布与正态分布无显著差异”,因此一般来说,KS检验最终返回两个结果,分别是检验统计量及P值,检验结果P0.05才是我们的目标 。
实际上,GraphPad不推荐使用单纯的Kolmogorov-Smirnov test方法
夏皮洛-威尔克检验(Shapiro—Wilk test),一般又称W检验 。W检验是一种类似于利用秩进行相关性检验的方法 。同样需要注意的是,W检验与K-S检验一样 , 原假设是“样本数据来自的分布与正态分布无显著差异”,因此一般来说 , W检验最终返回两个结果,分别是检验统计量及P值 。,检验结果P0.05才是我们的目标 。
当数据集中的数据无重复值时,该方法的检验效果比较好,但是当数据集中有些数据不是独一无二的,即有些数据的数值是相同的,那么该方法的检验效果就不是很好
GraphPad官方推荐使用该方法 。
首先计算 偏度和峰度以便在不对称和形状方面量化分布离高斯分布的距离 。然后,其计算这些值中的每一个与高斯分布的预期值之间的差异,并基于这些差异的总和,计算各P值 。这是一种通用和强大的正态性检验,推荐使用 。请注意,D'Agostino开发python画正态函数了几种正态性检验 。Prism使用的其中一个是“综合K2”检验 。
安德森-达令检验样本数据是否来自特定分布,包括分布:'norm', 'expon', 'gumbel', 'extreme1' or 'logistic'.
原假设 H0:样本服从特定分布;备择假设 H1:样本不服从特定分布
实际上,从已有的文献表明,对于数据分布的正态性研究,首选方法是图形观察 , 即利用直方图、P-P图或Q-Q图进行观察,如果分布严重偏态和尖峰分布则建议进行进一步的假设检验 。如果图形分布结果不好判断 , 则再进行正态性检验 。
实际上,从已有的文献表明,对于数据分布的正态性研究,首选方法是图形观察 , 即利用直方图、P-P图或Q-Q图进行观察,如果分布严重偏态和尖峰分布则建议进行进一步的假设检验 。如果图形分布结果不好判断,则再进行正态性检验 。
其次,对于检验方法来说,对于K-S检验及W检验结果来说,有文献采用蒙特卡罗模拟方法进行多次验证,结果表明W检验结果相比于大部分方法都有较大的检验功效 , 而K-S方法的检验结果相对不佳 。并且部分学者认为,K-S检验的实用性远不如图形工具,因为在样本量少时,该检验不太敏感,但是在样本量大时 , 该检验却过于敏感 。因此正常情况下,我们更常采用W检验的结果 。
值得注意的是 , 虽然说K-S检验结果相对不佳,但是不同检验方法对于样本量的敏感度是不一样的 。在样本量较小的情况下(小于50个样本的情况下),请优先选择W检验;在样本量50-5000的情况下,可以酌情使用W检验及K—S检验;在样本量大于5000的情况下,请使用K-S检验结果 , 尤其是在SPSS中,当样本量大于5000的情况下,将只显示K-S检验结果,而不显示W检验结果 。
python画正态函数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于python中正态分布函数怎么输、python画正态函数的信息别忘了在本站进行查找喔 。

    推荐阅读