如何用JAVA程序解决三元一次方程组?可以用线性代数java代码实现线性代数的知识解决 。
把 X,Y,Z 和 后面的值 转化为 行列式,计算行列式的值就可以求解这道题目了 。
叫 克莱姆法则 , 查查资料,就能解决了 。
如果java代码实现线性代数你还需要答案的话 , 跟我联系 。qqjava代码实现线性代数:2838844
谁帮我写一个多元一次方程自动求解的程序啊 用JAVA写可以考虑线性代数多元一次方程解决方案
比如:
3x2y5z = 22
2x - 3y7z = 17
x6y - 3z = 4
则转化系数为行列式数组
int[][] param = {
{3,2,5, 22},
{2, -3,7, 17},
{1,6, -3,4}
};
参考编码:
public static void main(String[] args) throws Exception {
int[][] param = {
{3,2,5, 22},
{2, -3,7, 17},
{1,6, -3,4}
};
double[] result = new double[param.length];
double a = calc(param);
for (int i = 0; iparam.length; i) {
int[][] param2 = new int[param.length][param.length];
for (int m = 0; mparam2.length; m) {
for (int n = 0; nparam2[m].length; n) {
if (n == i) {
param2[m][n] = param[m][param[m].length - 1];
} else {
param2[m][n] = param[m][n];
}
}
}
result[i] = calc(param2) / a;
}
System.out.print("[");
for (int i = 0; iresult.length; i) {
if (i != 0) System.out.print(", ");
System.out.print(result[i]);
}
System.out.println("]");
}
private static int calc(int[][] param) {
int sum = 0;
int length = param.length;
for (int i = 0; ilength; i) {
int x = i;
int tmp = 1, tmp2 = 1;
for (int m = 0; mlength; m) {
tmp*= param[(xm) % length][m];
tmp2 *= param[(xm) % length][Math.abs(length - 1 - m) % length];
}
sum= tmp;
sum -= tmp2;
}
return sum;
}
利用java实现2^1,2^2,2^3,2^4......,代码!如果算的数小,可以放在int类型或者double类型的变量里.
太大的,就要放到BigInteger类型的变量里.
先看看放到int类型的变量代码
---------------------------------------------------------------
/*
* 数量比较小的情况下可以用这个来计算
* 太大了就存放不了了
*/
public class PowerNumber {
public static void main(String[] args) {
PowerNumber power = new PowerNumber();
// 准备求第几项的值
int n = 10;
// 这里先打印第4项
System.out.println("第"n"项结果是:"power.powerNumberN(n));
// 这里打印前4项的和
System.out.println("前"n"项的和是:"power.powerNumberSum(n));
}
// 计算第n项的值
int powerNumberN(int n) {
// 用来存放第n个数
int sum = 1;
for (int i = 1; i = n; i) {
sum = 2 * sum;
}
return sum;
}
// 计算前n项的和
int powerNumberSum(int n) {
// 存放前n项的和
int sumNum = 0;
int frontN = n;
for (int i = 1; i = n; i) {
// 存放第n项的值
int sum = 1;
for (int j = 1; j = frontN; j) {
// 第n项的值
sum = 2 * sum;
}
//求前一项
frontN--;
// 求出的值加到总和里
sumNum = sumNumsum;
}
return sumNum;
}
}
------------------------------------------------------
前4项的结果:
第4项结果是:16
前4项的和是:30
--------------------
前20项的结果:
第20项结果是:1048576
前20项的和是:2097150
----------------------
前40项的结果......
第40项结果是:0
前40项的和是:-2
================================================
再看看放到BigInteger类型的变量里的程序
---------------------------------
import java.math.BigInteger;
public class Power {
public static void main(String[] args) {
Power power = new Power();
// 准备求第几项的值
int n = 4;
// 这里先打印第4项
System.out.println("第"n"项结果是:"power.powerNum(n));
// 这里打印前4项的和
System.out.println("前"n"项的和是:"power.sumPowerNum(n));
}
// 计算第n项的值
BigInteger powerNum(int n) {
BigInteger num = BigInteger.ONE;
for (int i = 1; i = n; i) {
// 为了防止结果过大,将结果放在BigInteger中
// 每次对结果乘以2
num = num.multiply(new BigInteger(new Integer(2).toString()));
}
// 打印2^n结果
return num;
}
// 计算前n项的值
BigInteger sumPowerNum(int n) {
// 存放前n项的值
BigInteger sumNum = BigInteger.ZERO;
int frontN = n;
for (int i = 1; i = n; i) {
// 存放第n项的值
BigInteger num = BigInteger.ONE;
for (int j = 1; j = frontN; j) {
// 为了防止结果过大,将结果放在BigInteger中
// 每次对结果乘以2
【java代码实现线性代数 java中如何编写线程类】num = num.multiply(new BigInteger(new Integer(2).toString()));
}
// 每次循环让最大值减掉1,以计算前面的值
frontN--;
// 计算出第n项的值,将其放入总和sumNum中
sumNum = sumNum.add(num);
}
return sumNum;
}
}
---------------------------------------------------
前4项的结果:
第4项结果是:16
前4项的和是:30
--------------------------------------------------
前40项的结果:
第40项结果是:1099511627776
前40项的和是:2199023255550
---------------------------------------------------------------------------------------------
前400项的结果:
第400项结果是:2582249878086908589655919172003011874329705792829223512830659356540647622016841194629645353280137831435903171972747493376
前400项的和是:5164499756173817179311838344006023748659411585658447025661318713081295244033682389259290706560275662871806343945494986750
-------------------------------------------------------------------------------------
前4000项的结果:
第4000项结果是:13182040934309431001038897942365913631840191610932727690928034502417569281128344551079752123172122033140940756480716823038446817694240581281731062452512184038544674444386888956328970642771993930036586552924249514488832183389415832375620009284922608946111038578754077913265440918583125586050431647284603636490823850007826811672468900210689104488089485347192152708820119765006125944858397761874669301278745233504796586994514054435217053803732703240283400815926169348364799472716094576894007243168662568886603065832486830606125017643356469732407252874567217733694824236675323341755681839221954693820456072020253884371226826844858636194212875139566587445390068014747975813971748114770439248826688667129237954128555841874460665729630492658600179338272579110020881228767361200603478973120168893997574353727653998969223092798255701666067972698906236921628764772837915526086464389161570534616956703744840502975279094087587298968423516531626090898389351449020056851221079048966718878943309232071978575639877208621237040940126912767610658141079378758043403611425454744180577150855204937163460902512732551260539639221457005977247266676344018155647509515396711351487546062479444592779055555421362722504575706910949376
前4000项的和是:26364081868618862002077795884731827263680383221865455381856069004835138562256689102159504246344244066281881512961433646076893635388481162563462124905024368077089348888773777912657941285543987860073173105848499028977664366778831664751240018569845217892222077157508155826530881837166251172100863294569207272981647700015653623344937800421378208976178970694384305417640239530012251889716795523749338602557490467009593173989028108870434107607465406480566801631852338696729598945432189153788014486337325137773206131664973661212250035286712939464814505749134435467389648473350646683511363678443909387640912144040507768742453653689717272388425750279133174890780136029495951627943496229540878497653377334258475908257111683748921331459260985317200358676545158220041762457534722401206957946240337787995148707455307997938446185596511403332135945397812473843257529545675831052172928778323141069233913407489681005950558188175174597936847033063252181796778702898040113702442158097933437757886618464143957151279754417242474081880253825535221316282158757516086807222850909488361154301710409874326921805025465102521079278442914011954494533352688036311295019030793422702975092124958889185558111110842725445009151413821898750
要编写一个两个矩阵相乘的JAVA方法,本人不懂,求高手帮忙?。⊥蚍指屑ぃ 。?/h2>你好,按照你的要求代码如下 , 给出了注释和运行结果,可以直接运行:
public class test2 {
public static int[][] multiplyMatrix(int[][] a, int[][] b) {
// 判断是否合法
if (a == null || a == null || a.length == 0 || b.length == 0
|| a[0].length != b.length) {
return null;
}
// 计算相乘
int[][] c = new int[a.length][b[0].length];
for (int i = 0; ia.length; i) {
for (int j = 0; jb[0].length; j) {
for (int k = 0; ka[0].length; k) {
c[i][j]= a[i][k] * b[k][j];
}
}
}
return c;
}
public static void main(String[] args) {
int[][] a = new int[][] { { 1, 2, 3 }, { 1, 2, 3 } };
int[][] b = new int[][] { { 1, 2 }, { 1, 2 }, { 1, 2 } };
int[][] c = multiplyMatrix(a, b);
printMatrix(a);
printMatrix(b);
printMatrix(c);
}
// 打印矩阵
public static void printMatrix(int[][] c) {
if (c != null) {
for (int i = 0; ic.length; i) {
for (int j = 0; jc[0].length; j) {
System.out.print(c[i][j]" ");
}
System.out.println();
}
} else {
System.out.println("无效");
}
System.out.println();
}
}
运行结果:
1 2 3
1 2 3
1 2
1 2
1 2
6 12
6 12
java代码如何实现a^-1(mod b)?(1)用循环一个个试
(2)要快一点java代码实现线性代数,试试用扩展欧几里得算法(就是利用辗转相除找最大公因数java代码实现线性代数,算法过程中记录一些东西java代码实现线性代数,就知道是否有逆,有逆直接可求出来),
密码学书上均有 , java代码实现线性代数你也可在网上找
java代码实现线性代数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java中如何编写线程类、java代码实现线性代数的信息别忘了在本站进行查找喔 。
推荐阅读
- 凌风直播运营,凌风直播运营怎么样
- flutter调用ios原生,flutter 调用原生view
- 关于电视机怎么放ppt的信息
- Php多数据源 php大量数据处理
- jquery判断简写,Jquery判断元素是否存在
- 尼尔机械纪元用什么电脑好,尼尔机械纪元用什么电脑好用
- gis数据库招聘,gis数据处理招聘
- oracle如何查看主机 查看oracle主机名
- flutter绘制矩形,flutter 绘制原理