PHP-大数据量怎么处理优化大数据web大数据优化PHP的话可以进行以下操作web大数据优化PHP:
减少对数据库web大数据优化PHP的读取web大数据优化PHP,也就是减少调用数据库web大数据优化PHP,
进行数据缓存,
利用数据库的自身优化技术,如索引等
精确查询条件,有利于提高查找速度
如何自学PHP以及大数据量的优化学成的人不是没有但是太少了,没有基础的还是找个地方学学好点 。我建议你应该去实地去看一下,可以选择试听,感受一下学习的氛围和环境,跟学生交谈一下,了解更多的信息 。然后再根据自己的感受和各方面的因素来决定,避免浪费时间和金钱 。
PHP如何解决网站的大数据大流量与高并发使用缓存,比如memcache,redis,因为它们是在内存中运行,所以处理数据 , 返回数据非常快,所以可以应对高并发 。
2.增加带宽和机器性能 , 1M的带宽同时处理的流量肯定有限,所以在资源允许的情况下 , 大带宽 , 多核cpu,高内存是一个解决方案 。
3.分布式,让多个访问分到不同的机器上去处理,每个机器处理的请求就相对减少了 。
简单说些常用技术,负载均衡,限流,加速器等
PHP在最近一年在编程语言排行榜上下滑的原因是什么主要从两个方面发表一下个人看法:
行业变迁
最近两年,我们耳熟能详的技术热词比如:云计算、machine learning、TensorFlow、AI…… , 基本与PHP都没太大的关系,再比如:(自然语言处理)NLP、(物联网)IoT、big data、区块链(blockchain)……,也基本和PHP没太大的关系;难道说PHP技术不行了?那倒也不是 , 其根本原因在于技术发展日新月异,开发语言也愈加细分,golang主要用于云计算、Python主要用于神经网络与深度学习、大数据与数据可视化分析有R语言 , 反观PHP,似乎除了web、及部分APP后端开发,其他专业技术领域有点力不从心,尽管它也在一直寻求新的爆发点 。
语言特性
在web开发不甚成熟的时代,PHP以其“开发周期短”、“技术门槛低”的优势吸引了一大批开发人员加入,虽然项目可以很快推上线,但由于“弱类型解释语言”的基因缺陷,在性能优化大行其道的今天,PHP需要补足这一先天缺陷(从PHP5~PHP7就可以看出),这也给很多其他开发语言趁势而上的机会,比如go语言 。业务量暴增需要程序能适应更高的并发访问以及更低的延迟,go语言天生的并发编程语言特性就恰好解决这一痛点,我所参与的大部分项目都选择go语言进行数据的云同步 。再来说说Python,同样是动态解释型语言 , Python的技术应用场景相比PHP而言则多出不少,比如GUI程序开发、机器学习、数据抓取与分析…… , 一旦项目有大量数据抓取的需求,我的第一选择肯定会是Python,因为在同等开发周期内,Python的效率与执行效果是最优的;所以总的来看,性能不及golang纯粹 , 应用场景不如Python丰富,却也不能否定“PHP是最好的开发语言” 。我一般的技术选型如下:web后端与轻量级APP后台任务用PHP , 大数据量吞吐与并发数据传输用golang,大数据抓取与分析用Python,我一直认为“术业有专攻”,没有最好的语言,只有最合适的语言,如果能一枪放倒敌人就没必要与其拼刺刀 。
web前端 php python 大数据 的区别1.web前端和大数据是两个不同的领域 。其中涉及了不同的知识体系以及工具 。
2.PHP和python是编程语言,属于工具,不属于方向 。你可以用python搞大数据 , 也可以用PHP来搞大数据 , 只是python比PHP更合适,效率更高 。你可以用python开发网站 , 也可以用PHP,只是用PHP开发web更高效,成本更低廉 。
所以,说方向的话,web前端和大数据 你可以来选一个 。如果说选定方向以后用什么工具来做,那么PHP和python哪个效率高,更适合,就用哪个
php 处理上百万条的数据库如何提高处理查询速度1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引 。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或操作符,否则将引擎放弃使用索引而进行全表扫描 。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值 , 能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '玞%'
若要提高效率,可以考虑全文检索 。
7.如果在 where 子句中使用参数 , 也会导致全表扫描 。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择 。然而,如果在编译时建立访问计划,变量的值还是未知的 , 因而无法作为索引选择的输入项 。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描 。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作 , 这将导致引擎放弃使用索引而进行全表扫描 。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30'生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate='2005-11-30' and createdate'2005-12-1'
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算 , 否则系统将可能无法正确使用索引 。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致 。
12.不要写一些没有意义的查询 , 如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集 , 但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效 , SQL是根据表中数据来进行查询优化的 , 当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用 。
15.索引并不是越多越好 , 索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定 。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要 。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源 。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引 。
17.尽量使用数字型字段 , 若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销 。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了 。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些 。
19.任何地方都不要使用 select * from t , 用具体的字段列表代替“*”,不要返回用不到的任何字段 。
20.尽量使用表变量来代替临时表 。如果表变量包含大量数据,请注意索引非常有限(只有主键索引) 。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗 。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效 , 例如,当需要重复引用大型表或常用表中的某个数据集时 。但是,对于一次性事件,最好使用导出表 。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table , 避免造成大量 log,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table , 然后insert 。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table,这样可以避免系统表的较长时间锁定 。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行 , 那么就应该考虑改写 。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题 , 基于集的方法通常更有效 。
27.与临时表一样,游标并不是不可使用 。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法 , 尤其是在必须引用几个表才能获得所需的数据时 。在结果集中包括“合计”的例程通常要比使用游标执行的速度快 。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好 。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON,在结束时设置 SET NOCOUNT OFF。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息 。
29.尽量避免大事务操作 , 提高系统并发能力 。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理 。
【web大数据优化PHP php处理大数据量数据的思路】关于web大数据优化PHP和php处理大数据量数据的思路的介绍到此就结束了 , 不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。
推荐阅读
- 华数tv直播软件,下载华数电视直播
- 家用怎么安装无线路由器,如何安装家用无线路由器
- 日本steam恋爱养成游戏,日本经典恋爱养成游戏
- python给函数赋初值 python赋值的含义
- 怎么样连接无线宽带路由器,怎么样连接无线宽带路由器密码
- word怎么打微升,word怎么打微米
- 如何放大word表,怎么放大word的表格
- oracle怎么获取前年 oracle获取上一年年份
- asp.nethtml登录代码下载,aspnet用户登录