python正态密度函数 python 正态分布反函数

如何用python求出某已知正态分布的概率密度算出平均值和标准差μ、σpython正态密度函数,代入正态分布密度函数表达式python正态密度函数:
f(x) = exp{-(x-μ)2/2σ2}/[√(2π)σ]
给定x值,即可算出f值 。
高中就开始学的正态分布,原来如此重要 我们从高中就开始学正态分布python正态密度函数,现在做数据分析、机器学习还是离不开它python正态密度函数,那python正态密度函数你有没有想过正态分布有什么特别之处?为什么那么多关于数据科学和机器学习的文章都围绕正态分布展开?本文作者专门写python正态密度函数了一篇文章,试着用易于理解的方式阐明正态分布的概念 。
机器学习的世界是以概率分布为中心的,而概率分布的核心是正态分布 。本文说明了什么是正态分布,以及为什么正态分布的使用如此广泛 , 尤其是对数据科学家和机器学习专家来说 。
我们会从最基础的内容开始解释 , 以便读者们理解为什么正态分布如此重要 。
目录:
Unsplash,由 timJ 发布 。
先让我们来看一点背景知识:
1. 首先,要注意的最重要的一点是,正态分布也被称为高斯分布 。
2. 它是以天才卡尔·弗里德里希·高斯(Carl Friedrich Gauss)的名字命名的 。
3. 最后需要注意的是,简单的预测模型一般都是最常用的模型,因为它们易于解释,也易于理解 。现在补充一点:正态分布因为简单而流行 。
因此,正态概率分布很值得我们去花时间了解 。
什么是概率分布?
想象我们正在自己的数据科学项目中构建感兴趣的预测模型:
概率越高,事件发生的可能性就越大 。
Unsplash,Brett Jordan 发布
举个例子 , 我们可以大量重复一个实验,并记录我们检索到的变量值,这样概率分布就会慢慢展现在我们的面前 。
每次实验产生一个值 , 这些值可以分配到类别/桶中了 。对每个桶来说,我们可以记录变量值出现在桶里的次数 。例如,我们可以扔 10,000 次骰子,每次骰子会产生 6 个可能的值,我们可以创建 6 个桶 。并记录每个值出现的次数 。
我们可以根据这些值作图 。所作曲线就是概率分布曲线,目标变量得到一个值的概率就是该变量的概率分布 。
理解了值的分布方式后 , 就可以开始估计事件的概率了,甚至可以使用公式(概率分布函数) 。因此,我们可以更好地理解它的行为 。概率分布依赖于样本的矩,比如平均值、标准差、偏度及峰度 。如果对所有概率求和,总和为 100% 。
现实世界中存在很多概率分布,最常用的是「正态分布」 。
什么是正态概率分布
如果对概率分布作图,得到一条倒钟形曲线,样本的平均值、众数以及中位数是相等的,那么该变量就是正态分布的 。
这是正态分布钟形曲线的示例:
上面是一个变量的高斯分布图形,像神经网络那样上百万的参数量 , 每个参数都有自己独立的分布形状,还有极其恐怖的联合分布形状 。这种高维联合分布就主导了不同任务的表现,因此理解和估计目标变量的概率分布是很重要的 。
以下变量非常接近正态分布:
1. 人群的身高
2. 成年人的血压
3. 扩散后的粒子的位置
4. 测量误差
5. 人群的鞋码
6. 员工回家所需时间
此外 , 我们周围的大部分变量都呈置信度为 x% 的正态分布(x100) 。所以说 , 生活中经常出现的各种变量,差不多都能用高斯分布描述 。
好理解的正态分布
正态分布是只依赖数据集中两个参数的分布,这两个参数分别是:样本的平均值和标准差 。
分布的这一特性让统计人员省事不少,因此预测任何呈正态分布的变量准确率通常都很高 。值得注意的是,一旦你研究过自然界中大多数变量的概率分布,你会发现它们都大致遵循正态分布 。
正态分布很好解释 。因为:
1. 分布的均值、众数和中位数是相等的;
2. 我们只要用平均值和标准差就可以解释整个分布 。
为什么这么多变量近似正态分布?
为什么样本一多,那么总会有一堆样本都非常普通?这个想法背后有这样一个定理:你在大量随机变量上多次重复一个实验时,它们的分布总和将非常接近正态性(normality) 。
人的身高是一个基于其他随机变量(比如一个人所消耗的营养量、他们居住的环境以及他们的基因等)的随机变量,这些随机变量的分布总和最终是非常接近正态的 。这就是中心极限定理 。
我们从前文了解到,正态分布是许多随机分布的和 。如果我们对正态分布密度函数作图,那所作曲线有如下特性:
这个钟形曲线平均值为 100,标准差为 1 。
上图介绍了非常出名的 3σ原则,即:
这样我们就可以轻松地估计出变量的波动性 , 还可以给出一个置信水平,估计它可能取的值是多少 。例如,在上面的灰色钟型曲线中,变量值出现在 101~99 之间的概率约为 68.2% 。想象一下,当你根据这样的信息做决定时,你的信心有多充足 。
概率分布函数
正态分布的概率密度函数是:
概率密度函数本质上是连续随机变量取某些值的概率 。例如想知道变量出现在 0 到 1 之间,它的概率就能通过概率密度函数求出 。
如何用 Python 找出特征分布?
我用过的最简单的方法是在 Pandas 的 DataFrame 中加载所有特征,然后直接调用它的方法找出特征的概率分布:
这里的 bins 表示分布的柱状数量 。当然上面并不是一个正态分布,那么当变量满足正态分布时,它意味着什么?
这意味着,如果你把大量分布不同的随机变量加在一起,你的新变量最终也服从正态分布,这就是中心极限定理的魅力 。此外,服从正态分布的变量会一直服从正态分布 。举个例子,如果 A 和 B 是两个服从正态分布的变量,那么:
变量还是乖乖地变成正态分布吧
如果样本满足某个未知的分布,那么通过一系列操作,它总是能变成正态分布 。相反 , 标准正态分布的叠加与转换,也一定能变化为任意未知分布 。从标准正态转换到未知分布,就是很多机器学习模型希望做到的,不论是视觉中的 VAE 或 GAN , 还是其它领域的模型 。
但对于传统统计学,我们更希望将特征的分布转换成正态分布,因为正态分布简单又好算呀 。下面展示了几种转换为标准正态的方法,像相信变换什么的,在高中都有学过 。
1. 线性变换
我们收集到作为变量的样本后 , 就可以用下面的公式对样本做线性变换 , 从而计算出
用下式根据每一个值 x 计算出 Z
以前 x 可能服从某个未知分布,但是归一化后的 Z 是服从正态分布的 。嗯,这就是做批量归一化或其它归一化的好处吧 。
2.Box-cox 变换
你可以用 Python 的 SciPy 包将数据转换成正态分布:
3.YEO-JOHBSON 变换
此外 , 也可以用强大的 yeo-johnson 变换 。Python 的 sci-kit learn 提供了合适的函数:
最后,非常重要的一点是,在没有做任何分析的情况下假设变量服从正态分布是很不明智的 。
以遵循泊松分布(Poisson distribution)、t 分布(student-t 分布)或二项分布(Binomial distribution)的样本为例,如果错误地假设变量服从正态分布可能会得到错误的结果 。
以上就是关于正态分布的一些讨论 。
如果文章对你有帮助,欢迎转发/点赞/收藏~
如何在Python中实现这五类强大的概率分布R编程语言已经成为统计分析中的事实标准 。但在这篇文章中python正态密度函数,我将告诉你在Python中实现统计学概念会是如此容易 。我要使用Python实现一些离散和连续的概率分布 。虽然我不会讨论这些分布的数学细节 , 但我会以链接的方式给你一些学习这些统计学概念的好资料 。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable) 。随机变量是对一次试验结果的量化 。
举个例子,一个表示抛硬币结果的随机变量可以表示成
Python
1
2
X = {1 如果正面朝上,
2 如果反面朝上}
随机变量是一个变量,它取值于一组可能的值(离散或连续的) , 并服从某种随机性 。随机变量的每个可能取值的都与一个概率相关联 。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion) 。
我鼓励大家仔细研究一下scipy.stats模块 。
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布 。
离散概率分布也称为概率质量函数(probability mass function) 。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等 。
连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数 。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布 。
若想python正态密度函数了解更多关于离散和连续随机变量的知识 , 你可以观看可汗学院关于概率分布的视频 。
二项分布(Binomial Distribution)
服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p 。
E(X) = np, Var(X) = np(1?p)
如果你想知道每个函数的原理 , 你可以在IPython笔记本中使用help file命令 。E(X)表示分布的期望或平均值 。
键入stats.binom?了解二项分布函数binom的更多信息 。
二项分布的例子:抛掷10次硬币 , 恰好两次正面朝上的概率是多少?
假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的 。我定义掷硬币的所有可能结果为k = np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上 , 一直到10次正面朝上 。我使用stats.binom.pmf计算每次观测的概率质量函数 。它返回一个含有11个元素的列表(list) , 这些元素表示与每个观测相关联的概率值 。
您可以使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数 。我让Python返回10000个参数为n和p的二项式随机变量 。我将输出这些随机变量的平均值和标准差 , 然后画出所有的随机变量的直方图 。
泊松分布(Poisson Distribution)
一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数 。参数λ告诉你该事件发生的比率 。随机变量X的平均值和方差都是λ 。
E(X) = λ, Var(X) = λ
泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?
让我们考虑这个平均每天发生2起事故的例子 。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数 。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率 。我用结果生成了以下图片 。
你可以看到,事故次数的峰值在均值附近 。平均来说 , 你可以预计事件发生的次数为λ 。尝试不同的λ和n的值 , 然后看看分布的形状是怎么变化的 。
现在我来模拟1000个服从泊松分布的随机变量 。
正态分布(Normal Distribution)
正态分布是一种连续分布 , 其函数可以在实线上的任何地方取值 。正态分布由两个参数描述:分布的平均值μ和方差σ2。
E(X) = μ, Var(X) = σ2
正态分布的取值可以从负无穷到正无穷 。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数 。
β分布(Beta Distribution)
β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画 。
β分布的形状取决于α和β的值 。贝叶斯分析中大量使用了β分布 。
当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniform distribution) 。尝试不同的α和β取值,看看分布的形状是如何变化的 。
指数分布(Exponential Distribution)
指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔 。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等 。
我将参数λ设置为0.5,并将x的取值范围设置为 $[0, 15]$。
接着,我在指数分布下模拟1000个随机变量 。scale参数表示λ的倒数 。函数np.std中,参数ddof等于标准偏差除以 $n-1$ 的值 。
结语(Conclusion)
概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结 。我建议你去看看哈佛大学数据科学课程的讲座 , Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部 。
python 怎么求标准正态分布某个值示例:
1、from numpy import *;
2、def rand_Matrix():
3、randArr=random.randn(2,3);
4、randMat=mat(randArr);
5、return randMat;
一种结果如下:
1、matrix([[ 0.3150869 , -0.02041996, -0.15361071],
2、[-0.75507988,0.80393683, -0.31790917]])
扩展资料
Python正态分布概率计算方法:
def st_norm(u):
'''标准正态分布'''
import math
x=abs(u)/math.sqrt(2)
T=(0.0705230784,0.0422820123,0.0092705272,
0.0001520143,0.0002765672,0.0000430638)
E=1-pow((1 sum([a*pow(x,(i 1))
for i,a in enumerate(T)])),-16)
p=0.5-0.5*E if u0 else 0.5 0.5*E
return(p)
def norm(a,sigma,x):
'''一般正态分布'''
u=(x-a)/sigma
return(st_norm(u))
while 1:
'''输入一个数时默认为标准正态分布
输入三个数(空格隔开)时分别为期望、方差、x
输入 stop 停止'''
S=input('please input the parameters:\n')
if S=='stop':break
try:
L=[float(s) for s in S.split()]
except:
print('Input error!')
continue
if len(L)==1:
print('f(x)=%.5f'%st_norm(L[0]))
elif len(L)==3:
print('f(x)=%.5f'%norm(L[0],L[1],L[2]))
else:
print('Input error!')
统计学入门级:常见概率分布 python绘制分布图 如果随机变量X的所有取值都可以逐个列举出来 , 则称X为离散型随机变量 。相应的概率分布有二项分布,泊松分布 。
如果随机变量X的所有取值无法逐个列举出来,而是取数轴上某一区间内的任一点 , 则称X为连续型随机变量 。相应的概率分布有正态分布,均匀分布,指数分布,伽马分布,偏态分布,卡方分布 , beta分布等 。(真多分布,好恐怖~~)
在离散型随机变量X的一切可能值中,各可能值与其对应概率的乘积之和称为该随机变量X的期望值,记作E(X)。比如有随机变量,取值依次为:2 , 2,2,4 , 5 。求其平均值:(2 2 2 4 5)/5 = 3 。
期望值也就是该随机变量总体的均值 。推导过程如下:
= (2 2 2 4 5)/5
= 1/5 2 34/55/5
= 3/5 21/5 41/5 5
= 0.6 20.2 40.2 5
= 60% 220% 420%*5
= 1.20.81
= 3
倒数第三步可以解释为值为2的数字出现的概率为60% , 4的概率为20%,5的概率为20% 。所以E(X) = 60% 220% 420%*5 = μ = 3 。
0-1分布(两点分布),它的随机变量的取值为1或0 。即离散型随机变量X的概率分布为:P{X=0} = 1-p, P{X=1} = p , 即:
则称随机变量X服从参数为p的0-1分布,记作X~B(1,p) 。
在生活中有很多例子服从两点分布,比如投资是否中标,新生婴儿是男孩还是女孩,检查产品是否合格等等 。
大家非常熟悉的抛硬币试验对应的分布就是二项分布 。抛硬币试验要么出现正面,要么就是反面,只包含这两个结果 。出现正面的次数是一个随机变量 , 这种随机变量所服从的概率分布通常称为 二项分布。
像抛硬币这类试验所具有的共同性质总结如下:(以抛硬币为例)
通常称具有上述特征的n次重复独立试验为n重伯努利试验 。简称伯努利试验或伯努利试验概型 。特别地,当试验次数为1时 , 二项分布服从0-1分布(两点分布) 。
举个栗子:抛3次均匀的硬币,求结果出现有2个正面的概率。
已知p = 0.5 (出现正面的概率),n = 3 ,k = 2
所以抛3次均匀的硬币,求结果出现有2个正面的概率为3/8 。
二项分布的期望值和方差 分别为:
泊松分布是用来描述在一 指定时间范围内或在指定的面积或体积之内某一事件出现的次数的分布。生活中服从泊松分布的例子比如有每天房产中介接待的客户数,某微博每月出现服务器瘫痪的次数等等 。泊松分布的公式为 :
其中 λ 为给定的时间间隔内事件的平均数,λ = np 。e为一个数学常数 , 一个无限不循环小数,其值约为2.71828 。
泊松分布的期望值和方差 分别为:
使用Python绘制泊松分布的概率分布图:
因为连续型随机变量可以取某一区间或整个实数轴上的任意一个值,所以通常用一个函数f(x)来表示连续型随机变量 , 而f(x)就称为 概率密度函数。
概率密度函数f(x)具有如下性质 :
需要注意的是,f(x)不是一个概率,即f(x)≠ P(X = x)。在连续分布的情况下,随机变量X在a与b之间的概率可以写成:
正态分布(或高斯分布)是连续型随机变量的最重要也是最常见的分布,比如学生的考试成绩就呈现出正态分布的特征 , 大部分成绩集中在某个范围(比如60-80分),很小一部分往两端倾斜(比如50分以下和90多分以上) 。还有人的身高等等 。
正态分布的定义 :
如果随机变量X的概率密度为( -∞x ∞):
则称X服从正态分布,记作X~N(μ,σ2) 。其中-∞μ ∞,σ0,μ为随机变量X的均值,σ为随机变量X的标准差 。正态分布的分布函数
正态分布的图形特点 :
使用Python绘制正态分布的概率分布图:
正态分布有一个3σ准则,即数值分布在(μ-σ,μ σ)中的概率为0.6827,分布在(μ-2σ,μ 2σ)中的概率为0.9545,分布在(μ-3σ,μ 3σ)中的概率为0.9973,也就是说大部分数值是分布在(μ-3σ,μ 3σ)区间内,超出这个范围的可能性很小很?。?仅占不到0.3%,属于极个别的小概率事件,所以3σ准则可以用来检测异常值 。
当μ=0 , σ=1时,有
此时的正态分布N(0,1) 称为标准正态分布 。因为μ,σ都是确定的取值,所以其对应的概率密度曲线是一条 形态固定 的曲线 。
对标准正态分布,通常用φ(x)表示概率密度函数,用Φ(x)表示分布函数:
假设有一次物理考试特别难,满分100分,全班只有大概20个人及格 。与此同时语文考试很简单,全班绝大部分都考了90分以上 。小明的物理和语文分别考了60分和80分 , 他回家后告诉家长,这时家长能仅仅从两科科目的分值直接判断出这次小明的语文成绩要比物理好很多吗?如果不能,应该如何判断呢?此时Z-score就派上用场了 。Z-Score的计算定义 :
即 将随机变量X先减去总体样本均值,再除以总体样本标准差就得到标准分数啦 。如果X低于平均值 , 则Z为负数,反之为正数。通过计算标准分数 , 可以将任何一个一般的正态分布转化为标准正态分布 。
小明家长从老师那得知物理的全班平均成绩为40分 , 标准差为10 , 而语文的平均成绩为92分,标准差为4 。分别计算两科成绩的标准分数:
物理:标准分数 = (60-40)/10 = 2
语文:标准分数 = (85-95)/4 = -2.5
从计算结果来看,说明这次考试小明的物理成绩在全部同学中算是考得很不错的,而语文考得很差 。
指数分布可能容易和前面的泊松分布混淆,泊松分布强调的是某段时间内随机事件发生的次数的概率分布,而指数分布说的是 随机事件发生的时间间隔 的概率分布 。比如一班地铁进站的间隔时间 。如果随机变量X的概率密度为:
则称X服从指数分布,其中的参数λ0 。对应的分布函数 为:
均匀分布的期望值和方差 分别为:
使用Python绘制指数分布的概率分布图:
均匀分布有两种,分为 离散型均匀分布和连续型均匀分布。其中离散型均匀分布最常见的例子就是抛掷骰子啦 。抛掷骰子出现的点数就是一个离散型随机变量,点数可能有1 , 2,3 , 4,5,6 。每个数出现的概率都是1/6 。
设连续型随机变量X具有概率密度函数:
则称X服从区间(a,b)上的均匀分布 。X在等长度的子区间内取值的概率相同 。对应的分布函数为:
f(x)和F(x)的图形分别如下图所示:
均匀分布的期望值和方差 分别为:
如何用python使变量服从正太分布?正太分布哈哈
首先 , 如果想要你的一千万个数据严格服从正态分布,那么先确定这个分布的数据 , 也就是均值和方差,N(u,o),这里均值 u=50 , 方差 o 由你确定 , 根据正态分布概率密度函数,对于每一个 1~100 之间的整数 x,都可以确定它出现的概率 f(x):
正态分布概率密度函数
而共有 10 000 000 个数字,那么 10000000*f(x) 就是 x 出现的频率 。
因此 , 使用一个 101 元素的数组 freq[] 存放这些数出现的频率,用 f(x)*10000000 逐个计算数组元素 , 也就是 x 应该出现的次数,假如说 2 一共会出现 3 次,那么 freq[2]=3 , 计算出之后放在那里,作为一个参照 。再初始化一个全为 0 的 100 个元素的数组 sam[],记录每个数字已经出现的次数 。之后开始从 1~100 随机 , 每随机一个数字 x 都给 sam[x] 加1,再和 freq[x] 比较,如果超出了 freq[x] 就说明这个数字已经不能再出现了 , 将其舍弃 。记录随机成功的次数,达到了 10000000 次即可 。
【python正态密度函数 python 正态分布反函数】关于python正态密度函数和python 正态分布反函数的介绍到此就结束了 , 不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。

    推荐阅读