Mysql某个表有近千万数据,CRUD比较慢,如何优化? 数据千万级别之多mysql大表怎么优化,占用mysql大表怎么优化的存储空间也比较大,可想而知它不会存储在一块连续mysql大表怎么优化的物理空间上,而是链式存储在多个碎片mysql大表怎么优化的物理空间上 。可能对于长字符串的比较,就用更多的时间查找与比较 , 这就导致用更多的时间 。
可以做表拆分,减少单表字段数量,优化表结构 。
在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致 。
主要两种拆分 垂直拆分,水平拆分 。
垂直分表
也就是“大表拆小表”,基于列字段进行的 。一般是表中的字段较多,将不常用的,数据较大 , 长度较长(比如text类型字段)的拆分到“扩展表“ 。一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题 。
垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库 , 商品Product一个库,订单Order一个库 。切分后,要放在多个服务器上,而不是一个服务器上 。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户 , 商品 , 订单等的CRUD 。没拆分之前 , 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈 。按垂直分库后,如果还是放在一个数据库服务器上 , 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存 , tps等非常吃紧 。所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题 。
数据库业务层面的拆分,和服务的“治理” , “降级”机制类似,也能对不同业务的数据分别的进行管理 , 维护,监控,扩展等 。数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲 , 是比较难实现“横向扩展”的 。数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈 。
水平分表
针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去 。但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈 。不建议采用 。
水平分库分表
将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同 。水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈 。
水平分库分表切分规则
1. RANGE
从0到10000一个表,10001到20000一个表;
2. HASH取模
一个商场系统,一般都是将用户,订单作为主表 , 然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题 。取用户id,然后hash取模,分配到不同的数据库上 。
3. 地理区域
比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此 。
4. 时间
按照时间切分 , 就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝 , 这些表的数据 被查询的概率变小 , 所以没必要和“热数据”放在一起,这个也是“冷热数据分离” 。
分库分表后面临的问题
事务支持
分库分表后 , 就成了分布式事务了 。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制 , 形成程序逻辑上的事务 , 又会造成编程方面的负担 。
跨库join
只要是进行切分,跨节点Join的问题是不可避免的 。但是良好的设计和切分却可以减少此类情况的发生 。解决这一问题的普遍做法是分两次查询实现 。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据 。
跨节点的count,order by,group by以及聚合函数问题
这些是一类问题,因为它们都需要基于全部数据集合进行计算 。多数的代理都不会自动处理合并工作 。解决方案mysql大表怎么优化:与解决跨节点join问题的类似 , 分别在各个节点上得到结果后在应用程序端进行合并 。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多 。但如果结果集很大,对应用程序内存的消耗是一个问题 。
数据迁移,容量规划,扩容等问题
来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移 , 但是依然需要进行表级别的迁移 , 同时对扩容规模和分表数量都有限制 。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度 。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制 。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面 , 应用程序在插入数据之前需要先获得ID,以便进行SQL路由.
一些常见的主键生成策略
UUID
使用UUID作主键是最简单的方案,但是缺点也是非常明显的 。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题 。
Twitter的分布式自增ID算法Snowflake
在分布式系统中 , 需要生成全局UID的场合还是比较多的 , twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息 , 核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位 。
跨分片的排序分页
一般来讲,分页时需要按照指定字段进行排序 。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候 , 情况就会变得比较复杂了 。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户 。
MySQL 对于大表 , 要怎么优化至少有3个方法
1、大表拆成若干个表mysql大表怎么优化,缺点mysql大表怎么优化:程序方面需要修改 。
2、大表做分区表,缺点:这个分区表的字段没有选择好,会影响性能 。
3、大表定期,手动把不用的老数据导出到另外一张表,保持大表数据不会过多 。
mysql对千万级的大表怎么优化MySQL 对于千万级的大表的优化:
常用的优化sql----突出快字 , 使完成操作的时间最短
1、用索引提高效率:
2、选择有效率的表名顺序,及数据结构及字段;
3、使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表;
4、删除重复记;
5、过内部函数提高SQL效率;......
读写分离-----操作不在一个表里完成
1、主数据库A,进行事务性增、改、删操作(INSERT、UPDATE、DELETE);
2、从数据库B,进行SELECT查询操作;
3、A复制到B,使数据保持一致性;
垂直划分 ------数据不存储在一个服务器里
按照功能划分,把数据分别放到不同的数据库和服务器 。如博客功能的放到服务器A,储存文件放到服务器B;
水平划分------相同数据结构的数据不放在一张表里
把一个表的数据根据一定的规则划分到不同的数据库,两个数据库的表结构一样 。
数据归档处理-----时间优先原则存储读取
【mysql大表怎么优化 sql优化大表和小表的顺序】将数据库中不经常使用的数据迁移至近线设备 , 将长期不使用的数据迁移至文件形式归档 。这样,随着应用的需要 , 数据会在在线、近线和文件文档之间移动,如当应用需要访问很久以前的某些数据,它们的物理位置在近线设备,则会自动移动到在线设备 。对用户的应用而言,这些都是透明的 , 就像所有数据都存放在在线设备一样,不会对数据库应用产生任何影响 。
mysql大表怎么优化的介绍就聊到这里吧 , 感谢你花时间阅读本站内容,更多关于sql优化大表和小表的顺序、mysql大表怎么优化的信息别忘了在本站进行查找喔 。
推荐阅读
- excel怎么插入时间,excel怎么添加时间
- 直播卖货都能卖什么货,直播卖货卖什么比较好
- c语言函数的连接 c++连接函数
- 路由器怎么远程开启和关闭,路由器怎么远程管理
- 现代动作类游戏特点,动作类游戏的特点
- 卫生间电视墙做什么样的好,卫生间电视背景墙效果图
- 在linux中输入命令 linux命令行输入
- 阳光下什么角度拍摄,阳光下拍摄人像
- ppt怎么添加框,PPT怎么添加框架