python中,任何传入的参数都会以副本的形式存在于函数中嘛?这句话对吗?可以这么说 。实际上参数是存放在属于函数python存在函数中的栈里面 。函数运行完成python存在函数中,释放占用python存在函数中的栈 。
python中函数的作用Python 函数定义以及参数传递
1.函数定义
#形如def func(args...):
doSomething123
以关键字def 开头,后面是函数名和参数下面是函数处理过程 。
举例:
def add( a, b ):
return a b12
参数可以设定默认值,如:
def add( a, b=10 ): #注意:默认值参数只会运算一次
return a b12
默认值参数只会运算一次是什么意思?
def func( a, b=[] ): #b的默认值指向一个空的列表,每次不带默认值都会指向这块内存
b.append(a)return b
print(func(1))#向默认的空列表里加入元素1 ,默认列表里已经是[1]print(func(2))#向默认的列表里加入元素2,默认列表里已经是[1,2]print(func(3,[]))#向b指向的空列表里加入元素1 ,默认列表里还是[1,2]print(func(4))#向默认的列表里加入元素4,默认列表里已经是[1,2,4]'''
结果:
[1]
[1, 2]
[3]
[1, 2, 4]
'''12345678910111213141516
这下明白为什么默认参数只计算一次了吧,函数参数不传递时默认值总是指向固定的内存空间,就是第一次计算的空间 。
2.参数传递
def func(a, b):
print('a=%d, b=%d' % (a,b) )12
在使用函数时可以如下方式,结果都是相同的
func(10,20) #不使用参数名 , 需要按参数顺序传递func(a=10,b=20) #使用参数名可以不按顺序传递func(b=20,a=10)#结果:a=10, b=20a=10, b=20a=10, b=201234567
如果函数定义形式如下方式:
def func(*args): #这种定义会把传递的参数包成元组
print(args,type(args))
func(10,20)#结果:#(10, 20) class 'tuple'1234567
举一个和上述过程相反的例子:
def func(a,b):
print('a=%d, b=%d' % (a,b) )
a = (10, 20)
func(*a) #在调用函数使用`*`则会把元组解包成单个变量按顺序传入函数#结果:a=10, b=20123456
总结:*号在定义函数参数时,传入函数的参数会转换成元组 , 如果 *号在调用时则会把元组解包成单个元素 。
另一种定义:
def func(**kw):#使用**定义参数会把传入参数包装成字典dict
print(kw, type(kw) )
func(a=10,b=20)#这种函数在使用时必须指定参数值,使用key=value这种形式#结果:{'b': 20, 'a': 10} class 'dict'12345
相反的例子:
def func(a,b):
print('a=%d, b=%d' % (a,b) )
d = {'a':10, 'b':20 }
func(**d) #在调用时使用**会把字典解包成变量传入函数 。12345
def func(*args, **kw):#这种形式的定义代表可以接受任意类型的参数
print(args,kw )12
总结:**号在定义函数参数时,传入函数的参数会转换成字典,如果 **号在调用时则会把字典解包成单个元素 。
lambda表达式
lambda表达式就是一种简单的函数
形如 f = lambda 参数1 , 参数2: 返回的计算值
例如:
add = lambda x,y: x y
print(add(1,2))'''
结果:3
'''12345
python里面有哪些自带函数?python系统提供了下面常用python存在函数中的函数python存在函数中:
1. 数学库模块(math)提供了很多数学运算函数;
2.复数模块(cmath)提供了用于复数运算python存在函数中的函数;
3.随机数模块(random)提供了用来生成随机数的函数;
4.时间(time)和日历(calendar)模块提供了能处理日期和时间的函数 。
注意python存在函数中:在调用系统函数之前,先要使用import 语句导入 相应的模块
该语句将模块中定义的函数代码复制到自己的程 序中,然后就可以访问模块中的任何函数,其方 法是在函数名前面加上“模块名.” 。
希望能帮到你 。
python中函数中定义的变量只能在该函数题中起作用对吗函数中定义的变量只能在函数体重起作用,Python在函数中定义的变量只能在该函数体中才可以起作用,只要出了这个函数,那么其他的地方就无法访问这个变量 , 因为该变量的作用域只在这个函数中,所以只在本函数体内有效 。
因为定义了局部变量只能在其被声明的函数内部访问,要想在程序的全域进行访问只能通过定义全局变量的方法进行实现 , 这些只要在程序控制范围内都可以调用 。
一般情况下变量就分为这两大类,一类是全局变量 , 一类是局部变量 。
Python常用的控制语句:
1、if语句,当条件成立时运行语句块 。经常与else , elif(相当于else if)配合使用、for语句,遍历列表、字符串、字典、集合等迭代器 , 依次处理迭代器中的每个元素 。
2、while语句,当条件为真时,循环运行语句块、try语句,与except,finally配合使用处理在程序运行中出现的异常情况、class语句,用于定义类型 。
3、def语句,用于定义函数和类型的方法、pass语句,表示此行为空,不运行任何操作 。
4、from… import语句,从包导入模块或从模块导入某个对象、import … as语句 , 将导入的对象赋值给一个变量、in语句,判断一个对象是否在一个字符串、列表、元组里 。
Python代码编写注意:
开发者有意让违反了缩进规则的程序不能通过编译,所以在进行Python代码的书写时一定要注意代码的缩进 。
以上内容参考:百度百科-Python
Python中冷门但非常好用的内置函数Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性
Counter
collections在python官方文档中的解释是High-performance container datatypes , 直接的中文翻译解释高性能容量数据类型 。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择 。在python3.10.1中它总共包含以下几种数据类型:
容器名简介
namedtuple() 创建命名元组子类的工厂函数
deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面
Counter 字典的子类,提供了可哈希对象的计数功能
OrderedDict 字典的子类,保存了他们被添加的顺序
defaultdict 字典的子类 , 提供了一个工厂函数,为字典查询提供一个默认值
UserDict 封装了字典对象,简化了字典子类化
UserList 封装了列表对象,简化了列表子类化
UserString 封装了字符串对象 , 简化了字符串子类化
其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读 。Counter类继承dict类 , 所以它能使用dict类里面的方法
举例
#统计词频
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
result = {}
for fruit in fruits:
if not result.get(fruit):
result[fruit] = 1
else:
result[fruit]= 1
print(result)
#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:
from collections import Counter
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
c = Counter(fruits)
print(dict(c))
#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了 , 也更容易阅读和维护了 。
elements()
返回一个迭代器,其中每个元素将重复出现计数值所指定次 。元素会按首次出现的顺序返回 。如果一个元素的计数值小于1,elements()将会忽略它 。
c = Counter(a=4, b=2, c=0, d=-2)
sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']most_common([n])
返回一个列表,其中包含n个最常见的元素及出现次数 , 按常见程度由高到低排序 。如果n被省略或为None,most_common()将返回计数器中的所有元素 。计数值相等的元素按首次出现的顺序排序:
Counter('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档
实战
Leetcode 1002.查找共用字符
给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回 。你可以按任意顺序返回答案 。
输入:words = ["bella", "label", "roller"]
输出:["e", "l", "l"]
输入:words = ["cool", "lock", "cook"]
输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决 。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数
class Solution:
def commonChars(self, words: List[str]) - List[str]:
from collections import Counter
ans = Counter(words[0])
for i in words[1:]:
ans = Counter(i)
return list(ans.elements())提交一下,发现83个测试用例耗时48ms , 速度还是不错的
sorted
在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序 。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表
对列表升序操作:
a = sorted([2, 4, 3, 7, 1, 9])
print(a)
# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:
sorted((4,1,9,6),reverse=True)
print(a)
# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:
fruits = ['apple', 'watermelon', 'pear', 'banana']
a = sorted(fruits, key = lambda x : len(x))
print(a)
# 输出:['pear', 'apple', 'banana', 'watermelon']all
all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False 。元素除了是 0、空、None、False外都算True 。注意:空元组、空列表返回值为True 。
all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0
True
all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素
False
all([0, 1,2, 3]) # 列表list,存在一个为0的元素
False
all(('a', 'b', 'c', 'd')) # 元组tuple , 元素都不为空或0
True
all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素
False
all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素
False
all([]) # 空列表
True
all(()) # 空元组
Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False 。如果全为空 , 0,False,则返回False;如果不全为空,则返回True 。
F-strings
在python3.6.2版本中 , PEP 498提出一种新型字符串格式化机制 , 被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:
s1='Hello'
s2='World'
print(f'{s1} {s2}!')
# Hello World!在F-strings中我们也可以执行函数:
def power(x):
return x*x
x=4
print(f'{x} * {x} = {power(x)}')
# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多 , 书写起来也更加简单 。
本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~
Python的函数都有哪些?Python 函数
函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段 。
函数能提高应用的模块性 , 和代码的重复利用率 。你已经知道Python提供了许多内建函数 , 比如print() 。但你也可以自己创建函数,这被叫做用户自定义函数 。
定义一个函数
你可以定义一个由自己想要功能的函数 , 以下是简单的规则:
函数代码块以 def 关键词开头 , 后接函数标识符名称和圆括号() 。
任何传入参数和自变量必须放在圆括号中间 。圆括号之间可以用于定义参数 。
函数的第一行语句可以选择性地使用文档字符串—用于存放函数说明 。
函数内容以冒号起始,并且缩进 。
return [表达式] 结束函数,选择性地返回一个值给调用方 。不带表达式的return相当于返回 None 。
语法
def functionname( parameters ):"函数_文档字符串"
function_suite
return [expression]
默认情况下 , 参数值和参数名称是按函数声明中定义的顺序匹配起来的 。
实例
以下为一个简单的Python函数 , 它将一个字符串作为传入参数,再打印到标准显示设备上 。
【python存在函数中 python在函数内部定义函数】实例(Python 2.0 )
def printme( str ):"打印传入的字符串到标准显示设备上"
print str
return
函数调用
定义一个函数只给了函数一个名称,指定了函数里包含的参数,和代码块结构 。
这个函数的基本结构完成以后,你可以通过另一个函数调用执行,也可以直接从Python提示符执行 。
如下实例调用了printme()函数:
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 定义函数def printme( str ):"打印任何传入的字符串"
print str
return
# 调用函数printme("我要调用用户自定义函数!")printme("再次调用同一函数")
以上实例输出结果:
我要调用用户自定义函数!再次调用同一函数
参数传递
在 python 中,类型属于对象,变量是没有类型的:
a=[1,2,3]
a="Runoob"
以上代码中,[1,2,3] 是 List 类型,"Runoob" 是 String 类型,而变量 a 是没有类型,她仅仅是一个对象的引用(一个指针) , 可以是 List 类型对象,也可以指向 String 类型对象 。
可更改(mutable)与不可更改(immutable)对象
在 python 中,strings, tuples, 和 numbers 是不可更改的对象,而 list,dict 等则是可以修改的对象 。
不可变类型:变量赋值 a=5 后再赋值 a=10,这里实际是新生成一个 int 值对象 10,再让 a 指向它,而 5 被丢弃,不是改变a的值,相当于新生成了a 。
可变类型:变量赋值 la=[1,2,3,4] 后再赋值 la[2]=5 则是将 list la 的第三个元素值更改,本身la没有动,只是其内部的一部分值被修改了 。
python 函数的参数传递:
不可变类型:类似 c的值传递,如 整数、字符串、元组 。如fun(a) , 传递的只是a的值,没有影响a对象本身 。比如在 fun(a)内部修改 a 的值,只是修改另一个复制的对象,不会影响 a 本身 。
可变类型:类似 c的引用传递,如 列表,字典 。如 fun(la) , 则是将 la 真正的传过去 , 修改后fun外部的la也会受影响
python 中一切都是对象,严格意义我们不能说值传递还是引用传递,我们应该说传不可变对象和传可变对象 。
python 传不可变对象实例
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
def ChangeInt( a ):a = 10
b = 2ChangeInt(b)print b # 结果是 2
实例中有 int 对象 2,指向它的变量是 b,在传递给 ChangeInt 函数时,按传值的方式复制了变量 b,a 和 b 都指向了同一个 Int 对象,在 a=10 时 , 则新生成一个 int 值对象 10,并让 a 指向它 。
传可变对象实例
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 可写函数说明def changeme( mylist ):"修改传入的列表"
mylist.append([1,2,3,4])
print "函数内取值: ", mylist
return
# 调用changeme函数mylist = [10,20,30]changeme( mylist )print "函数外取值: ", mylist
实例中传入函数的和在末尾添加新内容的对象用的是同一个引用,故输出结果如下:
函数内取值:[10, 20, 30, [1, 2, 3, 4]]函数外取值:[10, 20, 30, [1, 2, 3, 4]]
参数
以下是调用函数时可使用的正式参数类型:
必备参数
关键字参数
默认参数
不定长参数
必备参数
必备参数须以正确的顺序传入函数 。调用时的数量必须和声明时的一样 。
调用printme()函数,你必须传入一个参数 , 不然会出现语法错误:
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
#可写函数说明def printme( str ):"打印任何传入的字符串"
print str
return
#调用printme函数printme()
以上实例输出结果:
Traceback (most recent call last):
File "test.py", line 11, in module
printme()TypeError: printme() takes exactly 1 argument (0 given)
关键字参数
关键字参数和函数调用关系紧密,函数调用使用关键字参数来确定传入的参数值 。
使用关键字参数允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值 。
以下实例在函数 printme() 调用时使用参数名:
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
#可写函数说明def printme( str ):"打印任何传入的字符串"
print str
return
#调用printme函数printme( str = "My string")
以上实例输出结果:
My string
下例能将关键字参数顺序不重要展示得更清楚:
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
#可写函数说明def printinfo( name, age ):"打印任何传入的字符串"
print "Name: ", name
print "Age ", age
return
#调用printinfo函数printinfo( age=50, name="miki" )
以上实例输出结果:
Name:mikiAge50
默认参数
调用函数时,默认参数的值如果没有传入 , 则被认为是默认值 。下例会打印默认的age,如果age没有被传入:
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
#可写函数说明def printinfo( name, age = 35 ):"打印任何传入的字符串"
print "Name: ", name
print "Age ", age
return
#调用printinfo函数printinfo( age=50, name="miki" )printinfo( name="miki" )
以上实例输出结果:
Name:mikiAge50Name:mikiAge35
不定长参数
你可能需要一个函数能处理比当初声明时更多的参数 。这些参数叫做不定长参数,和上述2种参数不同,声明时不会命名 。基本语法如下:
def functionname([formal_args,] *var_args_tuple ):"函数_文档字符串"
function_suite
return [expression]
加了星号(*)的变量名会存放所有未命名的变量参数 。不定长参数实例如下:
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 可写函数说明def printinfo( arg1, *vartuple ):"打印任何传入的参数"
print "输出: "
print arg1
for var in vartuple:print var
return
# 调用printinfo 函数printinfo( 10 )printinfo( 70, 60, 50 )
以上实例输出结果:
输出:10输出:706050
匿名函数
python 使用 lambda 来创建匿名函数 。
lambda只是一个表达式,函数体比def简单很多 。
lambda的主体是一个表达式 , 而不是一个代码块 。仅仅能在lambda表达式中封装有限的逻辑进去 。
lambda函数拥有自己的命名空间,且不能访问自有参数列表之外或全局命名空间里的参数 。
虽然lambda函数看起来只能写一行,却不等同于C或C的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率 。
语法
lambda函数的语法只包含一个语句,如下:
lambda [arg1 [,arg2,.....argn]]:expression
如下实例:
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 可写函数说明sum = lambda arg1, arg2: arg1arg2
# 调用sum函数print "相加后的值为 : ", sum( 10, 20 )print "相加后的值为 : ", sum( 20, 20 )
以上实例输出结果:
相加后的值为 :30相加后的值为 :40
return 语句
return语句[表达式]退出函数 , 选择性地向调用方返回一个表达式 。不带参数值的return语句返回None 。之前的例子都没有示范如何返回数值 , 下例便告诉你怎么做:
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 可写函数说明def sum( arg1, arg2 ):# 返回2个参数的和."
total = arg1arg2
print "函数内 : ", total
return total
# 调用sum函数total = sum( 10, 20 )
以上实例输出结果:
函数内 :30
变量作用域
一个程序的所有的变量并不是在哪个位置都可以访问的 。访问权限决定于这个变量是在哪里赋值的 。
变量的作用域决定了在哪一部分程序你可以访问哪个特定的变量名称 。两种最基本的变量作用域如下:
全局变量
局部变量
全局变量和局部变量
定义在函数内部的变量拥有一个局部作用域 , 定义在函数外的拥有全局作用域 。
局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问 。调用函数时,所有在函数内声明的变量名称都将被加入到作用域中 。如下实例:
实例(Python 2.0 )
#!/usr/bin/python# -*- coding: UTF-8 -*-
total = 0 # 这是一个全局变量# 可写函数说明def sum( arg1, arg2 ):#返回2个参数的和."
total = arg1arg2 # total在这里是局部变量.
print "函数内是局部变量 : ", total
return total
#调用sum函数sum( 10, 20 )print "函数外是全局变量 : ", total
以上实例输出结果:
函数内是局部变量 :30函数外是全局变量 :0
关于python存在函数中和python在函数内部定义函数的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。
推荐阅读
- 用钉钉可以手机直播吗吗,钉钉能用手机直播吗
- 主板维修后怎么加硬盘驱动,主板维修后怎么加硬盘驱动器
- chatgpt不能连续提问,ChatGPT提问限制
- c语言用函数方法编程 用c语言编写函数
- postgresql安装出错6,pgsql安装失败
- linux关闭交互命令,linux 关闭gui
- 抖音直播间无人直播素材,无人直播素材怎么找
- java文件上传纯代码 java实现文件上传的三种方式
- java下载csdn.net,java下载安装教程