python中用polyfit拟合出的函数怎么能直接调用?首先分两种情况:
1.交互窗口处执行:这个时候由于python的强制缩进,因此想要结束函数的定义只需要按两下enter即可 。
2.在.py文件中编写,结束函数只需要不再缩进即可
调用函数方法相同,把函数名及参数写上就可以了,如果有返回值可以
r=functionA(var1)
附:测试代码(python3运行通过)
# -*- coding:utf-8 -*-
#author:zfxcx
def pt():
print("hello")
pt()
Python科学计算——任意波形拟合任意波形的生成(geneartion of arbitrary waveform) 在商业,军事等领域都有着重要的应用 , 诸如空间光通信 (free-space optics communication),高速信号处理 (high-speed signal processing) , 雷达 (radar) 等 。在任意波形生成后, 如何评估生成的任意波形 成为另外一个重要的话题 。
假设有一组实验数据 , 已知他们之间的函数关系:y=f(x),通过这些信息,需要确定函数中的一些参数项 。例如,f 是一个线型函数 f(x)=k*x b,那么参数 k 和 b 就是需要确定的值 。如果这些参数用 p 表示的话,那么就需要找到一组 p 值使得如下公式中的 S 函数最?。?
这种算法被称之为 最小二乘拟合(least-square fitting) 。scipy 中的子函数库 optimize 已经提供实现最小二乘拟合算法的函数leastsq。下面是 leastsq 函数导入的方式:
scipy.optimize.leastsq 使用方法
在Python科学计算——Numpy.genfromtxt一文中,使用numpy.genfromtxt对数字示波器采集的三角波数据导入进行了介绍,今天,就以4GHz三角波波形的拟合为案例介绍任意波形的拟合方法 。
在Python科学计算——如何构建模型?一文中,讨论了如何构建三角波模型 。在标准三角波波形的基础上添加了 横向,纵向的平移和伸缩特征参数 , 最后添加了 噪声参数 模拟了三角波幅度参差不齐的随机性特征 。但在波形拟合时,并不是所有的特征参数都要纳入考量,例如,噪声参数应是 波形生成系统 的固有特征,正因为它的存在使得产生的波形存在瑕疵,因此,在进行波形拟合并评估时,不应将噪声参数纳入考量,最终模型如下:
在调用 scipy.optimize.leastsq 函数时,需要构建误差函数:
有时候,为了使图片有更好的效果,需要对数据进行一些处理:
leastsq 调用方式如下:
合理的设置 p0 可以减少程序运行时间,因此,可以在运行一次程序后 , 用拟合后的相应数据对 p0 进行修正 。
在对波形进行拟合后,调用 pylab 对拟合前后的数据进行可视化:
均方根误差(root mean square error) 是一个很好的评判标准,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感 , 所以,均方根误差能够很好地反映出测量的精密度 。
RMSE 用程序实现如下:
拟合效果,模型参数输出:
leastsq 函数适用于任何波形的拟合 , 下面就来介绍一些常用的其他波形:
python_numpy最小二乘法的曲线拟合【Python已知函数拟合 python拟合幂函数】 在了解了最小二乘法的基本原理之后 python_numpy实用的最小二乘法理解 ,就可以用最小二乘法做曲线拟合了
从结果中可以看出,直线拟合并不能对拟合数据达到很好的效果,下面我们介绍一下曲线拟合 。
b=[y1]
[y2]
......
[y100]
解得拟合函数的系数[a,b,c.....d]
CODE:
根据结果可以看到拟合的效果不错 。
我们可以通过改变
来调整拟合效果 。
如果此处我们把拟合函数改为最高次为x^20的多项式
所得结果如下:
矫正 过拟合 现象
在保持拟合函数改为最高次为x^20的多项式的条件下,增大样本数:
通过结果可以看出,过拟合现象得到了改善 。
Python最小二乘法拟合与作图在函数拟合中 , 如果用p表示函数中需要确定的参数,那么目标就是找到一组p , 使得下面函数S的值最?。?
这种算法称为最小二乘法拟合 。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算 。
此处利用该函数对一段弧线使用圆方程进行了拟合 , 并通过Matplotlib模块进行了作图,程序内容如下:
Python的使用中需要导入相应的模块 , 此处首先用 import 语句
分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程 。leastsq则为最小二乘法拟合函数 。pylab是绘图模块 。
接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:
其参数有:
进行拟合时,首先我们需要定义一个目标函数 。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:
紧接着就可以进行拟合了, leastsq() 函数需要至少提供拟合的函数名与参数的初始值:
返回的结果为一数组,分别为拟合得到的参数与其误差值等 , 这里只取拟合参数值 。
leastsq() 的参数具体有:
输出选项有:
最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:
pylab.plot() 函数需提供两列数组作为输入 , 其他参数可调控线条颜色,形状,粗细以及对应名称等性质 。视需求而定 , 此处不做详解 。
pylab.legend() 函数可以调控图像标签的位置,有无边框等性质 。
pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数 。
pylab.show() 函数用于显示图像 。
最终结果如下图所示:
用Python作科学计算
numpy.loadtxt
scipy.optimize.leastsq
Python 中的函数拟合很多业务场景中Python已知函数拟合 , 我们希望通过一个特定Python已知函数拟合的函数来拟合业务数据,以此来预测未来数据的变化趋势 。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法Python已知函数拟合:多项式拟合 和 自定义函数拟合 。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可 。
运行结果Python已知函数拟合:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合 , 它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可 。
运行结果:
python拟合指数函数初始值如何设定求拟合函数 , 首先要有因变量和自变量的一组测试或实验数据,根据已知的曲线y=f(x),拟合出Ex和En系数 。当用拟合出的函数与实验数据吻合程度愈高,说明拟合得到的Ex和En系数是合理的 。吻合程度用相关系数来衡量,即R^2 。首先,我们需要打开Python的shell工具,在shell当中新建一个对象member,对member进行赋值 。2、这里我们所创建的列表当中的元素均属于字符串类型,同时我们也可以在列表当中创建数字以及混合类型的元素 。3、先来使用append函数对已经创建的列表添加元素 , 具体如下图所示,会自动在列表的最后的位置添加一个元素 。4、再来使用extend对来添加列表元素,如果是添加多个元素 , 需要使用列表的形式 。5、使用insert函数添加列表元素,insert中有两个参数,第一个参数即为插入的位置,第二个参数即为插入的元素 。origin拟合中参数值是程序拟合的结果,自定义函数可以设置参数的初值 , 也可以不设定参数的初值 。
一般而言,拟合结果不会因为初值的不同而有太大的偏差 , 如果偏差很大,说明数据和函数不太匹配,需要对函数进行改正 。X0的迭代初始值选择与求解方程 , 有着密切的关系 。不同的初始值得出的系数是完全不一样的 。这要通过多次选择和比较,才能得到较为合理的初值 。一般的方法,可以通过随机数并根据方程的特性来初选 。
关于Python已知函数拟合和python拟合幂函数的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。
推荐阅读
- 如何防止入室盗窃ppt,防止入室盗窃的警示标志
- 街霸单机安卓游戏下载安装,街霸下载安卓中文版
- 如何评价电商技校,怎样评价电商
- 23秒视频配什么音乐,30秒视频配乐
- mysql查询怎么添加列 mysql查询添加字段
- 凉茶如何营销,凉茶促销
- 熊出没益智游戏2015,熊出没益智游戏2015光头强越野
- 即时战略游戏十大排名图片,即时战略游戏百科
- python运行主函数 python主函数调用子函数变量