go语言切片能否扩大容量 go 切片容量

go语言数组,切片和字典的区别和联系、数组
与其他大多数语言类似,Go语言的数组也是一个元素类型相同的定长的序列 。
(1)数组的创建 。
数组有3种创建方式:[length]Type 、[N]Type{value1, value2, ... , valueN}、[...]Type{value1, value2, ... , valueN} 如下:
复制代码代码如下:
func test5() {
var iarray1 [5]int32
var iarray2 [5]int32 = [5]int32{1, 2, 3, 4, 5}
iarray3 := [5]int32{1, 2, 3, 4, 5}
iarray4 := [5]int32{6, 7, 8, 9, 10}
iarray5 := [...]int32{11, 12, 13, 14, 15}
iarray6 := [4][4]int32{{1}, {1, 2}, {1, 2, 3}}
fmt.Println(iarray1)
fmt.Println(iarray2)
fmt.Println(iarray3)
fmt.Println(iarray4)
fmt.Println(iarray5)
fmt.Println(iarray6)
}
结果:
[0 0 0 0 0]
[1 2 3 4 5]
[1 2 3 4 5]
[6 7 8 9 10]
[11 12 13 14 15]
[[1 0 0 0] [1 2 0 0] [1 2 3 0] [0 0 0 0]]
我们看数组 iarray1,只声明,并未赋值,Go语言帮我们自动赋值为0 。再看 iarray2 和 iarray3 ,我们可以看到,Go语言的声明,可以表明类型 , 也可以不表明类型 , var iarray3 = [5]int32{1, 2, 3, 4, 5} 也是完全没问题的 。
(2)数组的容量和长度是一样的 。cap() 函数和 len() 函数均输出数组的容量(即长度) 。如:
复制代码代码如下:
func test6() {
iarray4 := [5]int32{6, 7, 8, 9, 10}
fmt.Println(len(iarray4))
fmt.Println(cap(iarray4))
}
输出都是5 。
(3)使用:
复制代码代码如下:
func test7() {
iarray7 := [5]string{"aaa", `bb`, "可以啦", "叫我说什么好", "()"}
fmt.Println(iarray7)
for i := range iarray7 {
fmt.Println(iarray7[i])
}
}
二、切片
Go语言中,切片是长度可变、容量固定的相同的元素序列 。Go语言的切片本质是一个数组 。容量固定是因为数组的长度是固定的,切片的容量即隐藏数组的长度 。长度可变指的是在数组长度的范围内可变 。
(1)切片的创建 。
切片的创建有4种方式:
1)make ( []Type ,length, capacity )
2)make ( []Type, length)
3) []Type{}
4) []Type{value1 , value2 , ... , valueN }
从3)、4)可见,创建切片跟创建数组唯一的区别在于 Type 前的“ [] ”中是否有数字,为空,则代表切片 , 否则则代表数组 。因为切片是长度可变的 。如下是创建切片的示例:
复制代码代码如下:
func test8() {
slice1 := make([]int32, 5, 8)
slice2 := make([]int32, 9)
slice3 := []int32{}
slice4 := []int32{1, 2, 3, 4, 5}
fmt.Println(slice1)
fmt.Println(slice2)
fmt.Println(slice3)
fmt.Println(slice4)
}
输出为:
[0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[]
[1 2 3 4 5]
如上 , 创造了4个切片,3个空切片 , 一个有值的切片 。
(2)切片与隐藏数组:
一个切片是一个隐藏数组的引用,并且对于该切片的切片也引用同一个数组 。如下示例,创建了一个切片slice0,并根据这个切片创建了2个切片 slice1 和 slice2:
复制代码代码如下:
func test9() {
slice0 := []string{"a", "b", "c", "d", "e"}
slice1 := slice0[2 : len(slice0)-1]
slice2 := slice0[:3]
fmt.Println(slice0, slice1, slice2)
slice2[2] = "8"
fmt.Println(slice0, slice1, slice2)
}
输出为:
[a b c d e] [c d] [a b c]
[a b 8 d e] [8 d] [a b 8]
可见,切片slice0 、 slice1 和 slice2是同一个底层数组的引用,所以slice2改变了,其他两个都会变 。
(3)遍历、修改切片:
复制代码代码如下:
func test10() {
slice0 := []string{"a", "b", "c", "d", "e"}
fmt.Println("\n~~~~~~元素遍历~~~~~~")
for _, ele := range slice0 {
fmt.Print(ele, " ")
ele = "7"
}
fmt.Println("\n~~~~~~索引遍历~~~~~~")
for index := range slice0 {
fmt.Print(slice0[index], " ")
}
fmt.Println("\n~~~~~~元素索引共同使用~~~~~~")
for index, ele := range slice0 {
fmt.Print(ele, slice0[index], " ")
}
fmt.Println("\n~~~~~~修改~~~~~~")
for index := range slice0 {
slice0[index] = "9"
}
fmt.Println(slice0)
}
如上 , 前三种循环使用了不同的for range循环,当for后面 , range前面有2个元素时,第一个元素代表索引,第二个元素代表元素值,使用 “_” 则表示忽略,因为go语言中,未使用的值会导致编译错误 。
只有一个元素时 , 该元素代表索引 。
只有用索引才能修改元素 。如在第一个遍历中,赋值ele为7,结果没有作用 。因为在元素遍历中,ele是值传递,ele是该切片元素的副本,修改它不会影响原本值,而在第四个遍历——索引遍历中,修改的是该切片元素引用的值,所以可以修改 。
结果为:
~~~~~~元素遍历~~~~~~
a b c d e
~~~~~~索引遍历~~~~~~
a b c d e
~~~~~~元素索引共同使用~~~~~~
aa bb cc dd ee
~~~~~~修改~~~~~~
[9 9 9 9 9]
(4)、追加、复制切片:
复制代码代码如下:
func test11() {
slice := []int32{}
fmt.Printf("slice的长度为:%d,slice为:%v\n", len(slice), slice)
slice = append(slice, 12, 11, 10, 9)
fmt.Printf("追加后,slice的长度为:%d,slice为:%v\n", len(slice), slice)
slicecp := make([]int32, (len(slice)))
fmt.Printf("slicecp的长度为:%d,slicecp为:%v\n", len(slicecp), slicecp)
copy(slicecp, slice)
fmt.Printf("复制赋值后,slicecp的长度为:%d,slicecp为:%v\n", len(slicecp), slicecp)
}
追加、复制切片,用的是内置函数append和copy,copy函数返回的是最后所复制的元素的数量 。
(5)、内置函数append
内置函数append可以向一个切片后追加一个或多个同类型的其他值 。如果追加的元素数量超过了原切片容量,那么最后返回的是一个全新数组中的全新切片 。如果没有超过,那么最后返回的是原数组中的全新切片 。无论如何 , append对原切片无任何影响 。如下示例:
复制代码代码如下:
func test12() {
slice := []int32{1, 2, 3, 4, 5, 6}
slice2 := slice[:2]
_ = append(slice2, 50, 60, 70, 80, 90)
fmt.Printf("slice为:%v\n", slice)
fmt.Printf("操作的切片:%v\n", slice2)
_ = append(slice2, 50, 60)
fmt.Printf("slice为:%v\n", slice)
fmt.Printf("操作的切片:%v\n", slice2)
}
如上,append方法用了2次,结果返回的结果完全不同,原因是第二次append方法追加的元素数量没有超过 slice 的容量 。而无论怎样,原切片slice2都无影响 。结果:
slice为:[1 2 3 4 5 6]
操作的切片:[1 2]
slice为:[1 2 50 60 5 6]
操作的切片:[1 2]
GoLang中的切片扩容机制[5]int是数组,而[]int是切片 。二者看起来相似 , 实则是根本上不同的数据结构 。
切片的数据结构中 , 包含一个指向数组的指针array,当前长度len,以及最大容量cap。在使用make([]int, len)创建切片时,实际上还有第三个可选参数cap,也即make([]int, len, cap)。在不声明cap的情况下,默认cap=len。当切片长度没有超过容量时,对切片新增数据,不会改变array指针的值 。
当对切片进行append操作,导致长度超出容量时,就会创建新的数组,这会导致和原有切片的分离 。在下例中
由于a的长度超出了容量 , 所以切片a指向了一个增长后的新数组,而b仍然指向原来的老数组 。所以之后对a进行的操作,对b不会产生影响 。
试比较
本例中,a的容量为6,因此在append后并未超出容量 , 所以array指针没有改变 。因此,对a进行的操作,对b同样产生了影响 。
下面看看用a := []int{}这种方式来创建切片会是什么情况 。
可以看到,空切片的容量为0,但后面向切片中添加元素时,并不是每次切片的容量都发生了变化 。这是因为,如果增大容量,也即需要创建新数组,这时还需要将原数组中的所有元素复制到新数组中,开销很大,所以GoLang设计了一套扩容机制 , 以减少需要创建新数组的次数 。但这导致无法很直接地判断append时是否创建了新数组 。
如果一次添加多个元素,容量又会怎样变化呢?试比较下面两个例子:
那么,是不是说,当向一个空切片中插入2n-1个元素时,容量就会被设置为2n呢?我们来试试其他的数据类型 。
可以看到,根据切片对应数据类型的不同,容量增长的方式也有很大的区别 。相关的源码包括: src/runtime/msize.go , src/runtime/mksizeclasses.go 等 。
我们再看看切片初始非空的情形 。
可以看到,与刚刚向空切片添加5个int的情况一致,向有3个int的切片中添加2个int,容量增长为6 。
需要注意的是,append对切片扩容时,如果容量超过了一定范围,处理策略又会有所不同 。可以看看下面这个例子 。
具体为什么会是这样的变化过程,还需要从 源码 中寻找答案 。下面是src/runtime/slice.go中的growslice函数中的核心部分 。
GoLang中的切片扩容机制 , 与切片的数据类型、原本切片的容量、所需要的容量都有关系 , 比较复杂 。对于常见数据类型 , 在元素数量较少时 , 大致可以认为扩容是按照翻倍进行的 。但具体情况需要具体分析 。
go语言中实现切片(slice)的三种方式定义一个切片,然后让切片去引用一个已经创建好的数组 。基本语法如下go语言切片能否扩大容量:
索引1go语言切片能否扩大容量:切片引用的起始元素位
索引2:切片只引用该元素位之前的元素
例程如下:
在该方法中,go语言切片能否扩大容量我们未指定容量cap,这里的值为5是系统定义的 。
在方法一中,可以用arr数组名来操控数组中的元素,也可以通过slice切片来操控数组中的元素 。切片是直接引用数组,数组是事先存在的,程序员是可见的 。
通过 make 来创建切片,基本语法如下:
make函数第三个参数cap即容量是可选的,如果一定要自己注明的话,要注意保证cap≥len 。
用该方法可以 指定切片的大小(len)和容量(cap)
例程如下:
由于未赋值系统默认将元素值置为0,即:
数值类型数组:默认值为 0
字符串数组:默认值为 ""
bool数组:默认值为 false
在方法二中,通过make方式创建的切片对应的数组是由make底层维护,对外不可见,即只能通过slice去访问各个元素 。
定义一个切片,直接就指定具体数组,使用原理类似于make的方式 。
例程如下:
Go切片数组深度解析Go 中的分片数组 , 实际上有点类似于Java中的ArrayList,是一个可以扩展的数组,但是Go中的切片由比较灵活,它和数组很像,也是基于数组,所以在了解Go切片前我们先了解下数组 。
数组简单描述就由相同类型元素组成的数据结构, 在创建初期就确定了长度,是不可变的 。
但是Go的数组类型又和C与Java的数组类型不一样 , NewArray 用于创建一个数组,从源码中可以看出最后返回的是 Array{}的指针,并不是第一个元素的指针 , 在Go中数组属于值类型,在进行传递时,采取的是值传递,通过拷贝整个数组 。Go语言的数组是一种有序的struct 。
Go 语言的数组有两种不同的创建方式,一种是显示的初始化,一种是隐式的初始化 。
注意一定是使用 [...]T 进行创建,使用三个点的隐式创建 , 编译器会对数组的大小进行推导 , 只是Go提供的一种语法糖 。
其次 , Go中数组的类型,是由数值类型和长度两个一起确定的 。[2]int 和 [3]int 不是同一个类型,不能进行传参和比较,把数组理解为类型和长度两个属性的结构体,其实就一目了然了 。
Go中的数组属于值类型,通常应该存储于栈中,局部变量依然会根据逃逸分析确定存储栈还是堆中 。
编译器对数组函数中做两种不同的优化:
在静态区完成赋值后复制到栈中 。
总结起来,在不考虑逃逸分析的情况下,如果数组中元素的个数小于或者等于 4 个,那么所有的变量会直接在栈上初始化,如果数组元素大于 4 个 , 变量就会在静态存储区初始化然后拷贝到栈上 。
由于数组是值类型,那么赋值和函数传参操作都会复制整个数组数据 。
不管是赋值或函数传参,地址都不一致,发生了拷贝 。如果数组的数据较大 , 则会消耗掉大量内存 。那么为了减少拷贝我们可以主动的传递指针呀 。
地址是一样的,不过传指针会有一个弊端,从打印结果可以看到,指针地址都是同一个,万一原数组的指针指向更改了,那么函数里面的指针指向都会跟着更改 。
同样的我们将数组转换为切片,通过传递切片,地址是不一样的,数组值相同 。
切片是引用传递,所以它们不需要使用额外的内存并且比使用数组更有效率 。
所以,切片属于引用类型 。
通过这种方式可以将数组转换为切片 。
中间不加三个点就是切片,使用这种方式创建切片,实际上是先创建数组,然后再通过第一种方式创建 。
使用make创建切片,就不光编译期了,make创建切片会涉及到运行期 。1. 切片的大小和容量是否足够?。?
切片是否发生了逃逸 , 最终在堆上初始化 。如果切片小的话会先在栈或静态区进行创建 。
切片有一个数组的指针 , len是指切片的长度, cap指的是切片的容量 。
cap是在初始化切片是生成的容量 。
发现切片的结构体是数组的地址指针array unsafe.Pointer,而Go中数组的地址代表数组结构体的地址 。
slice 中得到一块内存地址,array[0]或者unsafe.Pointer(array[0]) 。
也可以通过地址构造切片
nil切片:指的unsafe.Pointer 为nil
空切片:
创建的指针不为空,len和cap为空
当一个切片的容量满了,就需要扩容了 。怎么扩,策略是什么?
如果原来数组切片的容量已经达到了最大值,再想扩容,Go 默认会先开一片内存区域,把原来的值拷贝过来,然后再执行 append() 操作 。这种情况对现数组的地址和原数组地址不相同 。
从上面结果我们可以看到,如果用 range 的方式去遍历一个切片,拿到的 Value 其实是切片里面的值拷贝,即浅拷贝 。所以每次打印 Value 的地址都不变 。
由于 Value 是值拷贝的,并非引用传递 , 所以直接改 Value 是达不到更改原切片值的目的的,需要通过 slice[index] 获取真实的地址 。
【golang】内存逃逸常见情况和避免方式因为如果变量的内存发生逃逸,它的生命周期就是不可知的 , 其会被分配到堆上,而堆上分配内存不能像栈一样会自动释放 , 为了解放程序员双手,专注于业务的实现,go实现了gc垃圾回收机制,但gc会影响程序运行性能,所以要尽量减少程序的gc操作 。
1、在方法内把局部变量指针返回 , 被外部引用,其生命周期大于栈,则溢出 。
2、发送指针或带有指针的值到channel,因为编译时候无法知道那个goroutine会在channel接受数据,编译器无法知道什么时候释放 。
3、在一个切片上存储指针或带指针的值 。比如[]*string,导致切片内容逃逸,其引用值一直在堆上 。
4、因为切片的append导致超出容量,切片重新分配地址,切片背后的存储基于运行时的数据进行扩充,就会在堆上分配 。
5、在interface类型上调用方法,在Interface调用方法是动态调度的 , 只有在运行时才知道 。
1、go语言的接口类型方法调用是动态,因此不能在编译阶段确定,所有类型结构转换成接口的过程会涉及到内存逃逸发生,在频次访问较高的函数尽量调用接口 。
2、不要盲目使用变量指针作为参数,虽然减少了复制,但变量逃逸的开销更大 。
3、预先设定好slice长度,避免频繁超出容量,重新分配 。
go语言string之Buffer与Builder操作字符串离不开字符串的拼接,但是Go中string是只读类型,大量字符串的拼接会造成性能问题 。
拼接字符串,无外乎四种方式,采用“ ”,“fmt.Sprintf()”,"bytes.Buffer","strings.Builder"
上面我们创建10万字符串拼接的测试,可以发现"bytes.Buffer","strings.Builder"的性能最好,约是“ ”的1000倍级别 。
这是由于string是不可修改的,所以在使用“ ”进行拼接字符串,每次都会产生申请空间,拼接 , 复制等操作,数据量大的情况下非常消耗资源和性能 。而采用Buffer等方式 , 都是预先计算拼接字符串数组的总长度(如果可以知道长度),申请空间 , 底层是slice数组,可以以append的形式向后进行追加 。最后在转换为字符串 。这申请了不断申请空间的操作,也减少了空间的使用和拷贝的次数 , 自然性能也高不少 。
bytes.buffer是一个缓冲byte类型的缓冲器存放着都是byte
是一个变长的 buffer,具有 Read 和Write 方法 。Buffer 的 零值 是一个 空的 buffer,但是可以使用 , 底层就是一个 []byte,字节切片 。
向Buffer中写数据,可以看出Buffer中有个Grow函数用于对切片进行扩容 。
从Buffer中读取数据
strings.Builder的方法和bytes.Buffer的方法的命名几乎一致 。
但实现并不一致,Builder的Write方法直接将字符拼接slice数组后 。
其没有提供read方法,但提供了strings.Reader方式
Reader 结构:
Buffer:
Builder:
可以看出Buffer和Builder底层都是采用[]byte数组进行装载数据 。
先来说说Buffer:
创建好Buffer是一个empty的,off 用于指向读写的尾部 。
在写的时候,先判断当前写入字符串长度是否大于Buffer的容量 , 如果大于就调用grow进行扩容,扩容申请的长度为当前写入字符串的长度 。如果当前写入字符串长度小于最小字节长度64 , 直接创建64长度的[]byte数组 。如果申请的长度小于二分之一总容量减去当前字符总长度,说明存在很大一部分被使用但已读,可以将未读的数据滑动到数组头 。如果容量不足,扩展2*cn。
其String()方法就是将字节数组强转为string
Builder是如何实现的 。
Builder采用append的方式向字节数组后添加字符串 。
从上面可以看出,[]byte的内存大小也是以倍数进行申请的 , 初始大小为 0,第一次为大于当前申请的最大 2 的指数,不够进行翻倍.
可以看出如果旧容量小于1024进行翻倍 , 否则扩展四分之一 。(2048 byte 后,申请策略的调整) 。
其次String()方法与Buffer的string方法也有明显区别 。Buffer的string是一种强转,我们知道在强转的时候是需要进行申请空间,并拷贝的 。而Builder只是指针的转换 。
这里我们解析一下 *(*string)(unsafe.Pointer(b.buf)) 这个语句的意思 。
先来了解下unsafe.Pointer 的用法 。
也就是说,unsafe.Pointer 可以转换为任意类型,那么意味着,通过unsafe.Pointer媒介 , 程序绕过类型系统,进行地址转换而不是拷贝 。
即*A = Pointer = *B
就像上面例子一样,将字节数组转为unsafe.Pointer类型,再转为string类型,s和b中内容一样,修改b,s也变了,说明b和s是同一个地址 。但是对s重新赋值后,意味着s的地址指向了“WORLD”,它们所使用的内存空间不同了,所以s改变后,b并不会改变 。
所以他们的区别就在于 bytes.Buffer 是重新申请了一块空间,存放生成的string变量 , 而strings.Builder直接将底层的[]byte转换成了string类型返回了回来,去掉了申请空间的操作 。
【go语言切片能否扩大容量 go 切片容量】go语言切片能否扩大容量的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于go 切片容量、go语言切片能否扩大容量的信息别忘了在本站进行查找喔 。

    推荐阅读