python中的fn函数 python中fn的用法

python延时函数【python中的fn函数 python中fn的用法】python延时函数是什么?一起来看看吧!
python延时函数即python time sleep() 函数python中的fn函数 , 推迟调用线程python中的fn函数的运行python中的fn函数,可通过参数secs指秒数,表示进程挂起python中的fn函数的时间 。该函数没有返回值,sleep()方法语法:time.sleep(t),t表示推迟执行的秒数 。
函数接收一个指定函数fn,一个延迟时间ms和指定函数的参数*args,在指定延迟后,返回指定函数fn的调用结果 。函数使用sleep()方法来进行延迟,然后调用指定函数 。delay函数在调用的时候,可以使用lambda表达式的匿名函数,也可以使用一般函数 。需要注意的是当fn存在关键字参数时会发生异常 。
例如:
#!/usr/bin/pythonimport timeprint "Start : %s" % time.ctime()time.sleep( 5 )print "End : %s" % time.ctime()Start : Tue Feb 17 10:19:18 2013End : Tue Feb 17 10:19:23 2013from time import sleepdef delay(fn, ms, *args):sleep(ms / 1000)return fn(*args)# EXAMPLESdelay(lambda x: print(x),1000,'later') # prints 'later' after one second
一个python函数的问题调用str2int函数 , 会首先定义这两个子函数
然后返回 reduce(fn,map(char2num,s))
也就是首先对s中每个元素执行char2num函数 , 返回值组成map中的元素,再对map中的元素累计执行fn函数,然后返回结果
如str2(’123’) 以'1','2','3'为参数调用 char2num先返回数字 1,2,3 , 然后对1,2,3累计执行fn(x,y)
1*10 2=12
12*10 3=123
最后 返回数字123
程序员fn算法有什么用FN算法是一种经典的机器学习算法 。它可以用来处理分类问题,可以实现半监督学习、多类分类、聚类等功能,是机器学习领域一个常用的算法 。例如,可以用FN算法来构建搜索引擎,处理图像识别问题,还可以用来进行文本分析,以及寻找模式,等等 。
python中定义函数fun(a,n),输入a和n两个参数,输出a的n次方。#include stdio.h
int fun(int a,int n)
{
int t;
for(t=1;n;n--)
t*=a;
return t;
}
int main()
{
int a,n;
scanf("%d%d",a,n);
printf("%d\n",fun(a,n));
return 0;
}
Python 里为什么函数可以返回一个函数内部定义的函数“在Python中python中的fn函数,函数本身也是对象”
这一本质 。那不妨慢慢来,从最基本的概念开始,讨论一下这个问题:
1. Python中一切皆对象
这恐怕是学习Python最有用的一句话 。想必你已经知道Python中的list, tuple, dict等内置数据结构,当你执行:
alist = [1, 2, 3]
时,你就创建了一个列表对象,并且用alist这个变量引用它:
当然你也可以自己定义一个类:
class House(object):
def __init__(self, area, city):
self.area = area
self.city = city
def sell(self, price):
[...]#other code
return price
然后创建一个类的对象:
house = House(200, 'Shanghai')
OK , 你立马就在上海有了一套200平米的房子,它有一些属性(area, city),和一些方法(__init__, self):
2. 函数是第一类对象
和list, tuple, dict以及用House创建的对象一样,当你定义一个函数时,函数也是对象:
def func(a, b):
return a b
在全局域 , 函数对象被函数名引用着,它接收两个参数a和b,计算这两个参数的和作为返回值 。
所谓第一类对象 , 意思是可以用标识符给对象命名,并且对象可以被当作数据处理,例如赋值、作为参数传递给函数,或者作为返回值return 等
因此,你完全可以用其python中的fn函数他变量名引用这个函数对象:
add = func
这样,你就可以像调用func(1, 2)一样,通过新的引用调用函数了:
print func(1, 2)
print add(1, 2)#the same as func(1, 2)
或者将函数对象作为参数,传递给另一个函数:
def caller_func(f):
return f(1, 2)
if __name__ == "__main__":
print caller_func(func)
可以看到,
函数对象func作为参数传递给caller_func函数,传参过程类似于一个赋值操作f=func;
于是func函数对象,被caller_func函数作用域中的局部变量f引用 , f实际指向了函数func;cc
当执行return f(1, 2)的时候,相当于执行了return func(1, 2);
因此输出结果为3 。
3. 函数对象 vs 函数调用
无论是把函数赋值给新的标识符,还是作为参数传递给新的函数,针对的都是函数对象本身,而不是函数的调用 。
用一个更加简单,但从外观上看,更容易产生混淆的例子来说明这个问题 。例如定义了下面这个函数:
def func():
return "hello,world"
然后分别执行两次赋值:
ref1 = func#将函数对象赋值给ref1
ref2 = func()#调用函数,将函数的返回值("hello,world"字符串)赋值给ref2
很多初学者会混淆这两种赋值,通过Python内建的type函数,可以查看一下这两次赋值的结果:
In [4]: type(ref1)
Out[4]: function
In [5]: type(ref2)
Out[5]: str
可以看到 , ref1引用了函数对象本身,而ref2则引用了函数的返回值 。通过内建的callable函数,可以进一步验证ref1是可调用的,而ref2是不可调用的:
In [9]: callable(ref1)
Out[9]: True
In [10]: callable(ref2)
Out[10]: False
传参的效果与之类似 。
4. 闭包LEGB法则
所谓闭包,就是将组成函数的语句和这些语句的执行环境打包在一起时,得到的对象
听上去的确有些复杂,还是用一个栗子来帮助理解一下 。假设我们在foo.py模块中做了如下定义:
#foo.py
filename = "foo.py"
def call_func(f):
return f()#如前面介绍的,f引用一个函数对象,然后调用它
在另一个func.py模块中,写下了这样的代码:
#func.py
import foo#导入foo.py
filename = "func.py"
def show_filename():
return "filename: %s" % filename
if __name__ == "__main__":
print foo.call_func(show_filename)#注意:实际发生调用的位置,是在foo.call_func函数中
当我们用python func.py命令执行func.py时输出结果为:
chiyu@chiyu-PC:~$ python func.py
filename:func.py
很显然show_filename()函数使用的filename变量的值,是在与它相同环境(func.py模块)中定义的那个 。尽管foo.py模块中也定义了同名的filename变量 , 而且实际调用show_filename的位置也是在foo.py的call_func内部 。
而对于嵌套函数 , 这一机制则会表现的更加明显:闭包将会捕捉内层函数执行所需的整个环境:
#enclosed.py
import foo
def wrapper():
filename = "enclosed.py"
def show_filename():
return "filename: %s" % filename
print foo.call_func(show_filename)#输出:filename: enclosed.py
实际上,每一个函数对象,都有一个指向了该函数定义时所在全局名称空间的__globals__属性:
#show_filename inside wrapper
#show_filename.__globals__
{
'__builtins__': module '__builtin__' (built-in),#内建作用域环境
'__file__': 'enclosed.py',
'wrapper': function wrapper at 0x7f84768b6578,#直接外围环境
'__package__': None,
'__name__': '__main__',
'foo': module 'foo' from '/home/chiyu/foo.pyc',#全局环境
'__doc__': None
}
当代码执行到show_filename中的return "filename: %s" % filename语句时,解析器按照下面的顺序查找filename变量:
Local - 本地函数(show_filename)内部,通过任何方式赋值的,而且没有被global关键字声明为全局变量的filename变量;
Enclosing - 直接外围空间(上层函数wrapper)的本地作用域 , 查找filename变量(如果有多层嵌套,则由内而外逐层查找,直至最外层的函数);
Global - 全局空间(模块enclosed.py),在模块顶层赋值的filename变量;
Builtin - 内置模块(__builtin__)中预定义的变量名中查找filename变量;
在任何一层先找到了符合要求的filename变量 , 则不再向更外层查找 。如果直到Builtin层仍然没有找到符合要求的变量 , 则抛出NameError异常 。这就是变量名解析的:LEGB法则 。
总结:
闭包最重要的使用价值在于:封存函数执行的上下文环境;
闭包在其捕捉的执行环境(def语句块所在上下文)中,也遵循LEGB规则逐层查找,直至找到符合要求的变量,或者抛出异常 。
5. 装饰器语法糖(syntax sugar)
那么闭包和装饰器又有什么关系呢?
上文提到闭包的重要特性:封存上下文,这一特性可以巧妙的被用于现有函数的包装,从而为现有函数更加功能 。而这就是装饰器 。
还是举个例子,代码如下:
#alist = [1, 2, 3, ..., 100]-- 1 2 3 ... 100 = 5050
def lazy_sum():
return reduce(lambda x, y: x y, alist)
我们定义了一个函数lazy_sum,作用是对alist中的所有元素求和后返回 。alist假设为1到100的整数列表:
alist = range(1, 101)
但是出于某种原因,我并不想马上返回计算结果,而是在之后的某个地方,通过显示的调用输出结果 。于是我用一个wrapper函数对其进行包装:
def wrapper():
alist = range(1, 101)
def lazy_sum():
return reduce(lambda x, y: x y, alist)
return lazy_sum
lazy_sum = wrapper()#wrapper() 返回的是lazy_sum函数对象
if __name__== "__main__":
lazy_sum()#5050
这是一个典型的Lazy Evaluation的例子 。我们知道 , 一般情况下 , 局部变量在函数返回时,就会被垃圾回收器回收,而不能再被使用 。但是这里的alist却没有,它随着lazy_sum函数对象的返回被一并返回了(这个说法不准确,实际是包含在了lazy_sum的执行环境中,通过__globals__) , 从而延长了生命周期 。
当在if语句块中调用lazy_sum()的时候,解析器会从上下文中(这里是Enclosing层的wrapper函数的局部作用域中)找到alist列表,计算结果 , 返回5050 。
当你需要动态的给已定义的函数增加功能时,比如:参数检查,类似的原理就变得很有用:
def add(a, b):
return a b
这是很简单的一个函数:计算a b的和返回,但我们知道Python是 动态类型 强类型 的语言,你并不能保证用户传入的参数a和b一定是两个整型,他有可能传入了一个整型和一个字符串类型的值:
In [2]: add(1, 2)
Out[2]: 3
In [3]: add(1.2, 3.45)
Out[3]: 4.65
In [4]: add(5, 'hello')
---------------------------------------------------------------------------
TypeErrorTraceback (most recent call last)
/home/chiyu/ipython-input-4-f2f9e8aa5eae in module()
---- 1 add(5, 'hello')
/home/chiyu/ipython-input-1-02b3d3d6caec in add(a, b)
1 def add(a, b):
---- 2return a b
TypeError: unsupported operand type(s) for: 'int' and 'str'
于是 , 解析器无情的抛出了一个TypeError异常 。
动态类型:在运行期间确定变量的类型,python确定一个变量的类型是在你第一次给他赋值的时候;
强类型:有强制的类型定义,你有一个整数,除非显示的类型转换,否则绝不能将它当作一个字符串(例如直接尝试将一个整型和一个字符串做 运算);
因此,为了更加优雅的使用add函数,我们需要在执行 运算前,对a和b进行参数检查 。这时候装饰器就显得非常有用:
import logging
logging.basicConfig(level = logging.INFO)
def add(a, b):
return ab
def checkParams(fn):
def wrapper(a, b):
if isinstance(a, (int, float)) and isinstance(b, (int, float)):#检查参数a和b是否都为整型或浮点型
return fn(a, b)#是则调用fn(a, b)返回计算结果
#否则通过logging记录错误信息,并友好退出
logging.warning("variable 'a' and 'b' cannot be added")
return
return wrapper#fn引用add,被封存在闭包的执行环境中返回
if __name__ == "__main__":
#将add函数对象传入,fn指向add
#等号左侧的add,指向checkParams的返回值wrapper
add = checkParams(add)
add(3, 'hello')#经过类型检查 , 不会计算结果,而是记录日志并退出
注意checkParams函数:
首先看参数fn,当我们调用checkParams(add)的时候,它将成为函数对象add的一个本地(Local)引用;
在checkParams内部,我们定义了一个wrapper函数,添加了参数类型检查的功能,然后调用了fn(a, b),根据LEGB法则,解释器将搜索几个作用域,并最终在(Enclosing层)checkParams函数的本地作用域中找到fn;
注意最后的return wrapper , 这将创建一个闭包,fn变量(add函数对象的一个引用)将会封存在闭包的执行环境中,不会随着checkParams的返回而被回收;
当调用add = checkParams(add)时,add指向了新的wrapper对象,它添加了参数检查和记录日志的功能,同时又能够通过封存的fn,继续调用原始的add进行 运算 。
因此调用add(3, 'hello')将不会返回计算结果,而是打印出日志:
chiyu@chiyu-PC:~$ python func.py
WARNING:root:variable 'a' and 'b' cannot be added
有人觉得add = checkParams(add)这样的写法未免太过麻烦,于是python提供了一种更优雅的写法 , 被称为语法糖:
@checkParams
def add(a, b):
return ab
这只是一种写法上的优化,解释器仍然会将它转化为add = checkParams(add)来执行 。
6. 回归问题
def addspam(fn):
def new(*args):
print "spam,spam,spam"
return fn(*args)
return new
@addspam
def useful(a,b):
print a**2 b**2
首先看第二段代码:
@addspam装饰器 , 相当于执行了useful = addspam(useful) 。在这里题主有一个理解误区:传递给addspam的参数,是useful这个函数对象本身,而不是它的一个调用结果;
再回到addspam函数体:
return new 返回一个闭包,fn被封存在闭包的执行环境中,不会随着addspam函数的返回被回收;
而fn此时是useful的一个引用,当执行return fn(*args)时,实际相当于执行了return useful(*args);
最后附上一张代码执行过程中的引用关系图 , 希望能帮助你理解:
python 统计 函数运行 次数 。import time
def time_me(fn):
def _wrapper(*args, **kwargs):
start = time.clock()
fn(*args, **kwargs)
print "%s cost %s second"%(fn.__name__, time.clock() - start)
return _wrapper
#这个装饰器可以在方便地统计函数运行的耗时 。
#用来分析脚本的性能是最好不过了 。
#这样用:
@time_me
def test(x, y):
time.sleep(0.1)
@time_me
def test2(x):
time.sleep(0.2)
test(1, 2)
test2(2)
#输出:
#test cost 0.1001529524 second
#test2 cost 0.199968431742 second
Python:
Python(英语发音:/?pa?θ?n/), 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年发明 , 第一个公开发行版发行于1991年 。
Python是纯粹的自由软件,源代码和解释器CPython遵循 GPL(GNU General Public License)协议[1]。
Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进 。
Python具有丰富和强大的库 。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C)很轻松地联结在一起 。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分 , 用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高 , 就可以用C/C重写,而后封装为Python可以调用的扩展类库 。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现 。
关于python中的fn函数和python中fn的用法的介绍到此就结束了 , 不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。

    推荐阅读