使用允许重复的数组元素求和到N的方法

本文概述

  • C ++
  • Java
  • Python3
  • C#
  • 的PHP
给定一组m个不同的正整数和值"N"。问题在于计算通过对数组元素求和形成"N"的总数。允许重复和不同的安排。
例子 :
Input : arr = {1, 5, 6}, N = 7 Output : 6Explanation:- The different ways are: 1+1+1+1+1+1+1 1+1+5 1+5+1 5+1+1 1+6 6+1Input : arr = {12, 3, 1, 9}, N = 14 Output : 150

方法:该方法基于动态编程的概念。
countWays(arr, m, N) Declare and initialize count[N + 1] = {0} count[0] = 1 for i = 1 to N for j = 0 to m - 1 if i > = arr[j] count[i] += count[i - arr[j]] return count[N]

下面是上述方法的实现。
C ++
// C++ implementation to count ways // to sum up to a given value N #include < bits/stdc++.h> using namespace std; // function to count the total // number of ways to sum up to 'N' int countWays( int arr[], int m, int N) { int count[N + 1]; memset (count, 0, sizeof (count)); // base case count[0] = 1; // count ways for all values up // to 'N' and store the result for ( int i = 1; i < = N; i++) for ( int j = 0; j < m; j++)// if i > = arr[j] then // accumulate count for value 'i' as // ways to form value 'i-arr[j]' if (i > = arr[j]) count[i] += count[i - arr[j]]; // required number of ways return count[N]; }// Driver code int main() { int arr[] = {1, 5, 6}; int m = sizeof (arr) / sizeof (arr[0]); int N = 7; cout < < "Total number of ways = " < < countWays(arr, m, N); return 0; }

Java
// Java implementation to count ways // to sum up to a given value Nclass Gfg { static int arr[] = { 1 , 5 , 6 }; // method to count the total number // of ways to sum up to 'N' static int countWays( int N) { int count[] = new int [N + 1 ]; // base case count[ 0 ] = 1 ; // count ways for all values up // to 'N' and store the result for ( int i = 1 ; i < = N; i++) for ( int j = 0 ; j < arr.length; j++)// if i > = arr[j] then // accumulate count for value 'i' as // ways to form value 'i-arr[j]' if (i > = arr[j]) count[i] += count[i - arr[j]]; // required number of ways return count[N]; }// Driver code public static void main(String[] args) { int N = 7 ; System.out.println( "Total number of ways = " + countWays(N)); } }

Python3
# Python3 implementation to count # ways to sum up to a given value N# Function to count the total # number of ways to sum up to 'N' def countWays(arr, m, N):count = [ 0 for i in range (N + 1 )]# base case count[ 0 ] = 1# Count ways for all values up # to 'N' and store the result for i in range ( 1 , N + 1 ): for j in range (m):# if i > = arr[j] then # accumulate count for value 'i' as # ways to form value 'i-arr[j]' if (i > = arr[j]): count[i] + = count[i - arr[j]]# required number of ways return count[N]# Driver Code arr = [ 1 , 5 , 6 ] m = len (arr) N = 7 print ( "Total number of ways = " , countWays(arr, m, N))# This code is contributed by Anant Agarwal.

C#
// C# implementation to count ways // to sum up to a given value N using System; class Gfg { static int []arr = {1, 5, 6}; // method to count the total number // of ways to sum up to 'N' static int countWays( int N) { int []count = new int [N+1]; // base case count[0] = 1; // count ways for all values up // to 'N' and store the result for ( int i = 1; i < = N; i++) for ( int j = 0; j < arr.Length; j++)// if i > = arr[j] then // accumulate count for value 'i' as // ways to form value 'i-arr[j]' if (i > = arr[j]) count[i] += count[i - arr[j]]; // required number of ways return count[N]; }// Driver code public static void Main() { int N = 7; Console.Write( "Total number of ways = " + countWays(N)); } }//This code is contributed by nitin mittal.

的PHP
< ?php // PHP implementation to count ways // to sum up to a given value N // function to count the total // number of ways to sum up to 'N' function countWays( $arr , $m , $N ) { $count = array_fill (0, $N + 1, 0); // base case $count [0] = 1; // count ways for all values up // to 'N' and store the result for ( $i = 1; $i < = $N ; $i ++) for ( $j = 0; $j < $m ; $j ++) // if i > = arr[j] then // accumulate count for value 'i' as // ways to form value 'i-arr[j]' if ( $i > = $arr [ $j ]) $count [ $i ] += $count [ $i - $arr [ $j ]]; // required number of ways return $count [ $N ]; } // Driver code $arr = array (1, 5, 6); $m =count ( $arr ); $N = 7; echo "Total number of ways = " , countWays( $arr , $m , $N ); // This code is contributed by Ryuga ?>

【使用允许重复的数组元素求和到N的方法】输出如下:
Total number of ways = 6

时间复杂度:O(N * m)
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。

    推荐阅读