#####仅作为笔记
- ORBSLAM2
https://github.com/raulmur/ORB_SLAM2
(1) Pangolin
sudo apt install libgl1-mesa-dev
sudo apt install libglew-dev
sudo apt install libpython2.7-dev
sudo apt-get install freeglut3-dev
sudo apt-get install libboost-dev libboost-thread-dev libboost-filesystem-dev
sudo apt-get install build-essential
git clone https://github.com/stevenlovegrove/Pangolin.git
cd Pangolin
mkdir build
cd build
cmake ..
make -j4
sudo make install
(2) OpenCV
sudo apt-get install libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
https://github.com/opencv/opencv/releases下载对应版本
tar -xzvf opencv-3.x.0.tar.gz
cd opencv-3.x.0/
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
sudo make install
(3) Eigen
sudo apt-get install libeigen3-dev
(4)安装
cd ~catkin_ws/src
git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2
cd ORB_SLAM2
chmod +x build.sh
./build.sh
或者需要ros版本的
export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:~/SLAM/src/ORB_SLAM2/Examples/ROS
./build_ros.sh
- Mask_RCNN
#安装TensorFlow和Keras
pip install tensorflow==1.3.0
pip install keras==2.0.8
pip install numpy==1.15.2#安装Mask_RCNN:
git clone https://github.com/matterport/Mask_RCNN.git
cd Mask_RCNN-master
sudo pip install -r requirements.txt
sudo python2 setup.py install#安装pycocotools:
git clone https://github.com/waleedka/coco.git
cd coco-master/PythonAPI
sudo make install
【SLAM|ubuntu16.04 运行DynaSLAM】这里注意要下载含carla的branch,作者的cmakelists中包含了carla的编译配置,然而在master中删去了carla的源文件,不然编译会报错。
https://github.com/BertaBescos/DynaSLAM/tree/bbescos/feature/carla
下载mask_rcnn_coco.h5权重:https://github.com/matterport/Mask_RCNN/releases
将coco/PythonAPI下的pycocotools文件夹和mask_rcnn_coco.h5放到Dynaslam的src/python目录下。打开Check.py,将第17行的ROOT_DIR = “src/python”,改为ROOT_DIR = “./”,保存退出。
运行:
python Check.py
#检查MaskRCNN环境配置
安装:
git clone https://github.com/BertaBescos/DynaSLAM.git
cd DynaSLAM
chmod +x build.sh
./build.sh
测试:
./Examples/Stereo/stereo_kitti Vocabulary/ORBvoc.txt Examples/Stereo/KITTIX.yaml PATH_TO_DATASET_FOLDER/dataset/sequences/SEQUENCE_NUMBER (PATH_TO_MASKS)
或者:
python associate.py PATH_TO_SEQUENCE/rgb.txt PATH_TO_SEQUENCE/depth.txt > associations.txt
./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE (PATH_TO_MASKS) (PATH_TO_OUTPUT)
测试结果:
文章图片
文章图片
推荐阅读
- SLAM学习笔记|SLAM14讲学习笔记(五)视觉里程计(光流法和直接法)和对于雅克比矩阵的理解
- 图像处理|opencv使用相机标定——实战篇(附代码与可执行程序并解决程序崩溃问题)
- slam|ORB-SLAM3与ORB-SLAM2对比
- 概率机器人笔记|概率机器人(测距仪的地图匹配模型)
- Cartorgrapher源码阅读04- PoseExtrapolator-前端匹配-位姿外插器
- Cartographer源码阅读03-local_trajectory_builder.cc(2)-前端匹配
- Linux|移植安装cartographer_ros
- 3D-2D: PnP ——SLAM14讲内容