分享20个Pandas短小精悍的数据操作

目录

  • 1. ExcelWriter
  • 2. pipe
  • 3. factorize
  • 4. explode
  • 5. squeeze
  • 6. between
  • 7. T
  • 8. pandas styler
  • 9. Pandas options
  • 10. convert_dtypes
  • 11. select_dtypes
  • 12. mask
  • 13. 列轴的min、max
  • 14. nlargest、nsmallest
  • 15. idmax、idxmin
  • 16. value_counts
  • 17. clip
  • 18. at_time、between_time
  • 19. hasnans
  • 20. GroupBy.nth

1. ExcelWriter 很多时候dataframe里面有中文,如果直接输出到csv里,中文将显示乱码。而Excel就不一样了,ExcelWriterpandas的一个类,可以使dataframe数据框直接输出到excel文件,并可以指定sheets名称。
df1 = pd.DataFrame([["AAA", "BBB"]], columns=["Spam", "Egg"])df2 = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])with ExcelWriter("path_to_file.xlsx") as writer:df1.to_excel(writer, sheet_name="Sheet1")df2.to_excel(writer, sheet_name="Sheet2")

如果有时间变量,输出时还可以date_format指定时间的格式。另外,它还可以通过mode设置输出到已有的excel文件中,非常灵活。
with ExcelWriter("path_to_file.xlsx", mode="a", engine="openpyxl") as writer:df.to_excel(writer, sheet_name="Sheet3")


2. pipe pipe管道函数可以将多个自定义函数装进同一个操作里,让整个代码更简洁,更紧凑。
比如,我们在做数据清洗的时候,往往代码会很乱,有去重、去异常值、编码转换等等。如果使用pipe,将是这样子的。
diamonds = sns.load_dataset("diamonds")df_preped = (diamonds.pipe(drop_duplicates).pipe(remove_outliers, ['price', 'carat', 'depth']).pipe(encode_categoricals, ['cut', 'color', 'clarity']))

两个字,干净!

3. factorize 【分享20个Pandas短小精悍的数据操作】factorize这个函数类似sklearnLabelEncoder,可以实现同样的功能。
# Mind the [0] at the enddiamonds["cut_enc"] = pd.factorize(diamonds["cut"])[0]>>> diamonds["cut_enc"].sample(5)52103239813031843010675066340Name: cut_enc, dtype: int64

区别是,factorize返回一个二值元组:编码的列和唯一分类值的列表。
codes, unique = pd.factorize(diamonds["cut"], sort=True)>>> codes[:10]array([0, 1, 3, 1, 3, 2, 2, 2, 4, 2], dtype=int64)>>> unique['Ideal', 'Premium', 'Very Good', 'Good', 'Fair']


4. explode explode爆炸功能,可以将array-like的值比如列表,炸开转换成多行。
data = https://www.it610.com/article/pd.Series([1, 6, 7, [46, 56, 49], 45, [15, 10, 12]]).to_frame("dirty")data.explode("dirty", ignore_index=True)

分享20个Pandas短小精悍的数据操作
文章图片


5. squeeze 很多时候,我们用.loc筛选想返回一个值,但返回的却是个series。其实,只要使用.squeeze()即可完美解决。比如:
# 没使用squeezesubset = diamonds.loc[diamonds.index < 1, ["price"]]# 使用squeezesubset.squeeze("columns")

分享20个Pandas短小精悍的数据操作
文章图片

可以看到,压缩完结果已经是int64的格式了,而不再是series

6. between dataframe的筛选方法有很多,常见的locisin等等,但其实还有个及其简洁的方法,专门筛选数值范围的,就是between,用法很简单。
diamonds[diamonds["price"]\.between(3500, 3700, inclusive="neither")].sample(5)

分享20个Pandas短小精悍的数据操作
文章图片


7. T 这是所有的dataframe都有的一个简单属性,实现转置功能。它在显示describe时可以很好的搭配。
boston.describe().T.head(10)

分享20个Pandas短小精悍的数据操作
文章图片


8. pandas styler pandas也可以像excel一样,设置表格的可视化条件格式,而且只需要一行代码即可(可能需要一丢丢的前端HTML和CSS基础知识)。
>>> diabetes.describe().T.drop("count", axis=1)\.style.highlight_max(color="darkred")

分享20个Pandas短小精悍的数据操作
文章图片

当然了,条件格式有非常多种。

9. Pandas options pandas里提供了很多宏设置选项,被分为下面5大类。
dir(pd.options)['compute', 'display', 'io', 'mode', 'plotting']

一般情况下使用display会多一点,比如最大、最小显示行数,画图方法,显示精度等等。
pd.options.display.max_columns = Nonepd.options.display.precision = 5


10. convert_dtypes 经常使用pandas的都知道,pandas对于经常会将变量类型直接变成object,导致后续无法正常操作。这种情况可以用convert_dtypes进行批量的转换,它会自动推断数据原来的类型,并实现转换。
sample = pd.read_csv("data/station_day.csv",usecols=["StationId", "CO", "O3", "AQI_Bucket"],)>>> sample.dtypesStationIdobjectCOfloat64O3float64AQI_Bucketobjectdtype: object>>> sample.convert_dtypes().dtypesStationIdstringCOfloat64O3float64AQI_Bucketstringdtype: object


11. select_dtypes 在需要筛选变量类型的时候,可以直接用selec _dtypes,通过includeexclude筛选和排除变量的类型。
# 选择数值型的变量diamonds.select_dtypes(include=np.number).head()# 排除数值型的变量diamonds.select_dtypes(exclude=np.number).head()


12. mask mask可以在自定义条件下快速替换单元值,在很多三方库的源码中经常见到。比如下面我们想让age为50-60以外的单元为空,只需要在conohter写好自定义的条件即可。
ages = pd.Series([55, 52, 50, 66, 57, 59, 49, 60]).to_frame("ages")ages.mask(cond=~ages["ages"].between(50, 60), other=np.nan)

分享20个Pandas短小精悍的数据操作
文章图片


13. 列轴的min、max 虽然大家都知道minmax的功能,但应用在列上的应该不多见。这对函数其实还可以这么用:
index = ["Diamonds", "Titanic", "Iris", "Heart Disease", "Loan Default"]libraries = ["XGBoost", "CatBoost", "LightGBM", "Sklearn GB"]df = pd.DataFrame({lib: np.random.uniform(90, 100, 5) for lib in libraries}, index=index)>>> df

分享20个Pandas短小精悍的数据操作
文章图片

>>> df.max(axis=1)Diamonds99.52684Titanic99.63650Iris99.10989Heart Disease99.31627Loan Default97.96728dtype: float64


14. nlargest、nsmallest 有时我们不仅想要列的最小值/最大值,还想看变量的前 N 个或 ~(top N) 个值。这时nlargestnsmallest就派上用场了。
diamonds.nlargest(5, "price")

分享20个Pandas短小精悍的数据操作
文章图片


15. idmax、idxmin 我们用列轴使用maxmin时,pandas 会返回最大/最小的值。但我现在不需要具体的值了,我需要这个最大值的位置。因为很多时候要锁定位置之后对整个行进行操作,比如单提出来或者删除等,所以这种需求还是很常见的。
使用idxmaxidxmin即可解决。
>>> diamonds.price.idxmax()27749>>> diamonds.carat.idxmin()14


16. value_counts 在数据探索的时候,value_counts是使用很频繁的函数,它默认是不统计空值的,但空值往往也是我们很关心的。如果想统计空值,可以将参数dropna设置为False
ames_housing = pd.read_csv("data/train.csv")>>> ames_housing["FireplaceQu"].value_counts(dropna=False, normalize=True)NaN0.47260Gd0.26027TA0.21438Fa0.02260Ex0.01644Po0.01370Name: FireplaceQu, dtype: float64


17. clip 异常值检测是数据分析中常见的操作。使用clip函数可以很容易地找到变量范围之外的异常值,并替换它们。
>>> age.clip(50, 60)

分享20个Pandas短小精悍的数据操作
文章图片


18. at_time、between_time 在有时间粒度比较细的时候,这两个函数超级有用。因为它们可以进行更细化的操作,比如筛选某个时点,或者某个范围时间等,可以细化到小时分钟。
>>> data.at_time("15:00")

分享20个Pandas短小精悍的数据操作
文章图片

from datetime import datetime>>> data.between_time("09:45", "12:00")

分享20个Pandas短小精悍的数据操作
文章图片


19. hasnans pandas提供了一种快速方法hasnans来检查给定series是否包含空值。
series = pd.Series([2, 4, 6, "sadf", np.nan])>>> series.hasnansTrue

该方法只适用于series的结构。

20. GroupBy.nth 此功能仅适用于GroupBy对象。具体来说,分组后,nth返回每组的第n行:
>>> diamonds.groupby("cut").nth(5)

分享20个Pandas短小精悍的数据操作
文章图片

到此这篇关于分享20个Pandas短小精悍的数据操作的文章就介绍到这了,更多相关Pandas数据操作内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    推荐阅读