目录
一、运行环境
二、安装CUDA环境
三、安装TensorRT
四、代码验证
一、运行环境 系统:Ubuntu 18.04.4
CUDA:cuda_11.0.2_450.51.05_linux
cuDNN:cudnn-11.1-linux-x64-v8.0.5.39
显卡驱动版本:450.80.02
TensorRT:TensorRT-8.4.0.6.Linux.x86_64-gnu.cuda-11.6.cudnn8.3
二、安装CUDA环境 Ubuntu安装CUDA和cuDNN_小殊小殊的博客-CSDN博客一、本文使用的环境系统:Ubuntu 18.04.4CUDA:cuda_11.1.0_455.23.05_linuxcuDNN:cudnn-11.1-linux-x64-v8.0.5.39显卡驱动版本:470.103.01二、安装CUDA1.下载:CUDA Toolkit 11.1.0 | NVIDIA Developer2.执行cuda_11.1.0_455.23.05_linux.run,注意不安装驱动,假设安装到默认目录/usr/local3. vi ~/.bashrchttps://blog.csdn.net/xian0710830114/article/details/124046512
三、安装TensorRT 1.下载地址: https://developer.nvidia.com/nvidia-tensorrt-8x-download,一定要下载TAR版本的
文章图片
2.安装
tar zxvf TensorRT-8.4.0.6.Linux.x86_64-gnu.cuda-11.6.cudnn8.3.tar.gz
cd TensorRT-8.4.0.6/python
# 根据自己的python版本选择
pip install tensorrt-8.4.0.6-cp37-none-linux_x86_64.whl
cd ../graphsurgeon
pip install graphsurgeon-0.4.5-py2.py3-none-any.whl
3.配置环境变量,将/data/setup/TensorRT-8.4.0.6/lib加入环境变量
vi ~/.bashrc
文章图片
四、代码验证 我用一个简单的facenet做例子,将pytorch转ONNX再转TensorRT,在验证的时候顺便跑了一下速度,可以看到ONNX速度比pytorch快一倍,TensorRT比ONNX快一倍,好像TensorRT没有传的这么神,我想应该还可以优化。
import torch
from torch.autograd import Variable
import onnx
import traceback
import os
import tensorrt as trt
from torch import nn
# import utils.tensortrt_util as trtUtil
# import pycuda.autoinit
import pycuda.driver as cuda
import cv2
import numpy as np
import onnxruntime
import time
from nets.facenet import Facenet
print(torch.__version__)
print(onnx.__version__)def torch2onnx(src_path, target_path):
'''
pytorch转换onnx
:param src_path:
:param target_path:
:return:
'''
input_name = ['input']
output_name = ['output']
# input = Variable(torch.randn(1, 3, 32, 32)).cuda()
# model = torchvision.models.resnet18(pretrained=True).cuda()
input = Variable(torch.randn(1, 3, 160, 160))model = Facenet(backbone="inception_resnetv1", mode="predict").eval()
state_dict = torch.load(src_path, map_location=torch.device('cuda'))
for s_dict in state_dict:
print(s_dict)
model.load_state_dict(state_dict, strict=False)
# torch.onnx.export(model, input, target_path, input_names=input_name, output_names=output_name, verbose=True,
#dynamic_axes={'input' : {0 : 'batch_size'},
#'output' : {0 : 'batch_size'}})
torch.onnx.export(model, input, target_path, input_names=input_name, output_names=output_name, verbose=True)
test = onnx.load(target_path)
onnx.checker.check_model(test)
print('run success:', target_path)def run_onnx(model_path):
'''
验证onnx
:param model_path:
:return:
'''
onnx_model = onnxruntime.InferenceSession(model_path, providers=onnxruntime.get_available_providers())
# onnx_model.get_modelmeta()
img = cv2.imread(r'img/002.jpg')
img = cv2.resize(img, (160, 160))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, (2, 1, 0))
img = img[np.newaxis, :, :, :]
img = img / 255.
img = img.astype(np.float32)
img = torch.from_numpy(img)
t = time.time()
tt = 0
# for i in range(1):
#img = np.random.rand(1, 3, 160, 160).astype(np.float32)
## img = torch.rand((1, 3, 224, 224)).cuda()
#results = onnx_model.run(["output"], {"input": img, 'batch'})Z
img = np.random.rand(1, 3, 160, 160).astype(np.float32)
# img = torch.rand((1, 3, 224, 224)).cuda()
results = onnx_model.run(["output"], {"input": img})
print('cost:', time.time() - t)
for i in range(5000):
img = np.random.rand(1, 3, 160, 160).astype(np.float32)
t1 = time.time()
results = onnx_model.run(["output"], {"input": img})
tt += time.time() - t1
# predict = torch.from_numpy(results[0])
print('onnx cost:', time.time() - t, tt)
# print("predict:", results)def run_torch(src_path):
model = Facenet(backbone="inception_resnetv1", mode="predict").eval()
state_dict = torch.load(src_path, map_location=torch.device('cuda'))
# for s_dict in state_dict:
#print(s_dict)
model.load_state_dict(state_dict, strict=False)
model = model.eval()
model = model.cuda()img = cv2.imread(r'img/002.jpg')
img = cv2.resize(img, (160, 160))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, (2, 1, 0))
img = img[np.newaxis, :, :, :]
img = img / 255.
img = img.astype(np.float32)
img = torch.from_numpy(img)
t = time.time()
tt = 0
for i in range(1):
img = torch.rand((1, 3, 160, 160)).cuda()
results = model(img)
print('cost:', time.time() - t)
for i in range(5000):
img = torch.rand((1, 3, 160, 160)).cuda()
t1 = time.time()
results = model(img)
tt += time.time() - t1
print('torch cost:', time.time() - t, tt)
# print("predict:", results)def onnx2rt(onnx_file_path, engine_file_path):
'''
ONNX转换TensorRT
:param onnx_file_path: onnx文件路径
:param engine_file_path: TensorRT输出文件路径
:return: engine
'''
# 打印日志
G_LOGGER = trt.Logger(trt.Logger.WARNING)
explicit_batch = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
print('explicit_batch:', explicit_batch)
with trt.Builder(G_LOGGER) as builder, builder.create_network(explicit_batch) as network, trt.OnnxParser(network,
G_LOGGER) as parser:
builder.max_batch_size = 100
builder.max_workspace_size = 1 << 20print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
parser.parse(model.read())
print('Completed parsing of ONNX file')print('Building an engine from file {};
this may take a while...'.format(onnx_file_path))
engine = builder.build_engine(network)
print("Completed creating Engine")# 保存计划文件
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return enginedef check_trt(model_path, image_size):
# 必须导入包,import pycuda.autoinit,否则cuda.Stream()报错
import pycuda.autoinit"""
验证TensorRT结果
"""
print('[Info] model_path: {}'.format(model_path))
img_shape = (1, 3, image_size, image_size)
print('[Info] img_shape: {}'.format(img_shape))trt_logger = trt.Logger(trt.Logger.WARNING)
trt_path = model_path# TRT模型路径
with open(trt_path, 'rb') as f, trt.Runtime(trt_logger) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
for binding in engine:
binding_idx = engine.get_binding_index(binding)
size = engine.get_binding_shape(binding_idx)
dtype = trt.nptype(engine.get_binding_dtype(binding))
print("[Info] binding: {}, binding_idx: {}, size: {}, dtype: {}"
.format(binding, binding_idx, size, dtype))t = time.time()
tt = 0
tt1 = 0
with engine.create_execution_context() as context:
for i in range(5000):
input_image = np.random.randn(*img_shape).astype(np.float32)# 图像尺寸
t1 = time.time()
input_image = np.ascontiguousarray(input_image)
tt1 += time.time() - t1
# print('[Info] input_image: {}'.format(input_image.shape))stream = cuda.Stream()
bindings = [0] * len(engine)for binding in engine:
idx = engine.get_binding_index(binding)if engine.binding_is_input(idx):
input_memory = cuda.mem_alloc(input_image.nbytes)
bindings[idx] = int(input_memory)
cuda.memcpy_htod_async(input_memory, input_image, stream)
else:
dtype = trt.nptype(engine.get_binding_dtype(binding))
shape = context.get_binding_shape(idx)output_buffer = np.empty(shape, dtype=dtype)
output_buffer = np.ascontiguousarray(output_buffer)
output_memory = cuda.mem_alloc(output_buffer.nbytes)
bindings[idx] = int(output_memory)context.execute_async_v2(bindings, stream.handle)
stream.synchronize()
cuda.memcpy_dtoh(output_buffer, output_memory)
tt += time.time() - t1
print('trt cost:', time.time() - t, tt, tt1)
# print("[Info] output_buffer: {}".format(output_buffer))if __name__ == '__main__':
torch2onnx(r"model_data/facenet_inception_resnetv1.pth", r"model_data/facenet_inception_resnetv1.onnx")
onnx2rt(r"model_data/facenet_inception_resnetv1.onnx", r"model_data/facenet_inception_resnetv1.trt")
run_onnx(r"model_data/facenet_inception_resnetv1.onnx")
run_torch(r"model_data/facenet_inception_resnetv1.pth")
check_trt(r"model_data/facenet_inception_resnetv1.trt", 160)
运行结果:ONNX速度比pytorch快一倍,TensorRT比ONNX快一倍
torch cost: 95.99401450157166
onnx cost:56.98542881011963
trt cost:26.91579008102417
【算法|一文看懂pytorch转换ONNX再转换TenserRT】
推荐阅读
- Python列表及其操作函数用法示例
- Python字面量详细用法
- Python If-else语句用法详解
- Python如何使用Lambda函数()
- Python关键字介绍
- Python历史记录和版本
- 如何安装Python(环境设置)(详细安装步骤图解)
- Python函数定义和用法详细解读
- Python for循环语句用法