知识为进步之母,而进步又为富强之源泉。这篇文章主要讲述Appendix 2- Lebesgue integration and Reimann integration相关的知识,希望能为你提供帮助。
Lebesgue integration and Reimann integration:
Reimann: Split up the axis into equal intervals, then approximate the function within each interval, add up all of those approximate values, and then let the quantization over the time axis become finer.
【Appendix 2- Lebesgue integration and Reimann integration】Lebesgue: Split up the other axis. Start with a zero, quantize into epsilon, 2 epsilon, 3 epsilon and so forth. Making epsilon smaller enough. Lower bound.
文章图片
Rules:
- l Whenever the Riemann integral exists, the Lebesgue integral also exists and has the same value.
- l The familiar rules for calculating Riemann integrals also apply for Lebesgue integrals.
- l For some very weird functions, the Lebesgue integral exists, but the Riemann integral does not. (i.e., Dirichlet function)
- l There are also exceptionally weird functions for which not even the Lebesgue integral exists.
推荐阅读
- uniapp里组件传值的异常情况(Watch方法的使用)
- [转]Android Studio实现代码混淆
- android : 解决android无法使用sun.misc.BASE64Encoder sun.misc.BASE64Decoder 的问题, 无需添加rt.jar
- Controller类的方法上的RequestMapping一定要写在Controller类里吗()
- 十分钟教会你使用安卓热修复框架AndFix
- 探索安卓热修复框架AndFix的奥秘
- Appium元素选择
- 安卓课设报告
- 报错An error happened during template parsing (template: "class path resource [templates/hello1(代