图像融合|基于深度学习的多曝光图像融合(Multi-exposure Image Fusion)论文及代码整理

基于深度学习的多曝光图像融合(Multi-exposure Image Fusion)论文及代码整理 首先附上近期整理基于深度学习的图像融合论文的思维导图
图像融合|基于深度学习的多曝光图像融合(Multi-exposure Image Fusion)论文及代码整理
文章图片

【图像融合|基于深度学习的多曝光图像融合(Multi-exposure Image Fusion)论文及代码整理】本篇博客主要整理基于深度学习的多曝光图像融合的论文和代码
图像融合系列博客还有:

  1. 图像融合论文及代码整理最全大合集参见:图像融合论文及代码整理最全大合集
  2. 图像融合综述论文整理参见:图像融合综述论文整理
  3. 图像融合评估指标参见:红外和可见光图像融合评估指标
  4. 图像融合常用数据集整理参见:图像融合常用数据集整理
  5. 通用图像融合框架论文及代码整理参见:通用图像融合框架论文及代码整理
  6. 基于深度学习的红外和可见光图像融合论文及代码整理参见:基于深度学习的红外和可见光图像融合论文及代码整理
  7. 更加详细的红外和可见光图像融合代码参见:红外和可见光图像融合论文及代码整理
  8. 基于深度学习的多曝光图像融合论文及代码整理参见:基于深度学习的多曝光图像融合论文及代码整理
  9. 基于深度学习的多聚焦图像融合论文及代码整理参见:基于深度学习的多聚焦图像融合(Multi-focus Image Fusion)论文及代码整理
  10. 基于深度学习的全色图像锐化论文及代码整理参见:基于深度学习的全色图像锐化(Pansharpening)论文及代码整理
  11. 基于深度学习的医学图像融合论文及代码整理参见:基于深度学习的医学图像融合(Medical image fusion)论文及代码整理
  12. 彩色图像融合参见: 彩色图像融合
  13. SeAFusion:首个结合高级视觉任务的图像融合框架参见:SeAFusion:首个结合高级视觉任务的图像融合框架
基于卷积神经网络的图像融合框架 1. DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs [DeepFuse(ICCV 2017)] [Paper] [Code]
2. Multi-exposure fusion with CNN features [CNN(ICIP 2018)] [Paper] [Code]
3. Deep guided learning for fast multi-exposure image fusion [DeepFuse(MEF-Net(TIP 2020))] [Paper] [Code]
4. Multi-exposure high dynamic range imaging with informative content enhanced network [ICEN(NC 2020)] [Paper]
5. Deep coupled feedback network for joint exposure fusion and image super-resolutions [CF-Net(TIP 2021)] [Paper] [Code]
6. Deep unsupervised learning based on color un-referenced loss functions for multi-exposure image fusion [UMEF(IF 2021)] [Paper] [Code]
7. Automatic Intermediate Generation With Deep Reinforcement Learning for Robust Two-Exposure Image Fusion [DRLF(TNNLS 2021)] [Paper]
8. DMulti-exposure image fusion via deep perceptual enhancement [DPE-MEF(IF 2022)] [Paper] [Code]
9. TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework using Self-Supervised Multi-Task Learning [TransMEF(AAAI 2022)] [Paper] [Code]
基于生成对抗网络的图像融合框架 1. MEF-GAN: Multi-Exposure Image Fusion via Generative Adversarial Networks [MEF-GAN(TIP 2020)] [Paper] [Code]
2. Two exposure fusion using prior-aware generative adversarial network [PA-GAN(TMM 2021)] [Paper]
3. Attention-guided Global-local Adversarial Learning for Detail-preserving Multi-exposure Image Fusion [AGAL(TCSVT 2021)] [Paper] [Code]
4. GANFuse: a novel multi-exposure image fusion method based on generative adversarial networks [GANFuse(NCAA 2021)] [Paper]
笔者QQ:2458707789, 好友申请请备注:姓名+学校 便于备注。

    推荐阅读