P VS NP

丈夫志四海,万里犹比邻。这篇文章主要讲述P VS NP相关的知识,希望能为你提供帮助。

目录

  • 1.1 P
    • 1.1.1 NP
    • 1.1.2 Certifiers and certificates: satisfiability
  • 2.1 Certifiers and certificates: Hamilton path
    • 2.1.1 Some problems in NP
  • 3.1 P, NP, and EXP
    • 3.1.1 The main question: P vs. NP

1.1 PDef. Algorithm A runs in polynomial time if for every string s, A(s)
terminates in ≤ p( ?s?) “steps,” where p(?) is some polynomial function.
1.1.1 NP
Def. Algorithm C(s, t) is a certifier for problem X if for every string s : s ∈ X iff there exists a string t such that C(s, t) = yes.
NP = set of decision problems for which there exists a poly-time certifier.
?C(s, t) is a poly-time algorithm.
?Certificate t is of polynomial size: ?t? ≤ p(?s?) for some polynomial p(?)
关于NP举一个例子:
P VS NP

文章图片

  • 我们找是否有两个数相乘等于437669
  • 首先我们找到了一个可验证的解就是541
  • 那么只要我们可以找多项式时间内找到809我们就可以找到原问题的解。
1.1.2 Certifiers and certificates: satisfiability
  • 3-SAT. SAT where each clause contains exactly 3 literals.
  • Certificate. An assignment of truth values to the Boolean variables.
  • Certifier. Check that each clause in Φ has at least one true literal.
验证步骤是这样的:
  1. 首先我们找到其中一个解作为验证实例比如x1=true,x2=tru2,x3=false,x4=false;
  2. 我们必须在多项式时间内可以验证这个解是成立的!
2.1 Certifiers and certificates: Hamilton path【P VS NP】HAMILTON-PATH: Given an undirected graph G = (V, E), does there exist a
simple path P that visits every node?
Certificate: A permutation π of the n nodes.
Certifier: Check that π contains each node in V exactly once,
and that G contains an edge between each pair of adjacent nodes
2.1.1 Some problems in NP
P VS NP

文章图片

3.1 P, NP, and EXPP. Decision problems for which there exists a poly-time algorithm.
NP. Decision problems for which there exists a poly-time certifier.
EXP. Decision problems for which there exists an exponential-time algorithm.
3.1.1 The main question: P vs. NP
Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, G?del]
Is the decision problem as easy as the certification problem?
P VS NP

文章图片

If yes… Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR, …
If no… No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, …

    推荐阅读