HOG+SVM实现行人检测 寻找hardexample

【HOG+SVM实现行人检测 寻找hardexample】得意犹堪夸世俗,诏黄新湿字如鸦。这篇文章主要讲述HOG+SVM实现行人检测 寻找hardexample相关的知识,希望能为你提供帮助。
1,实例代码

#include
#include
#include
#include
#include "dataset.h"
#include
#include
#include
#include
#include

#include

using namespace std;
using namespace cv;
using namespace cv::ml;

int HardExampleCount = 1;
#define cropHardNegNum 10896


class MySVM : publicml::SVM

public:
//获得SVM的决策函数中的alpha数组
double get_svm_rho()

return this-> getDecisionFunction(0, svm_alpha, svm_svidx);


//获得SVM的决策函数中的rho参数,即偏移量

vector< float> svm_alpha;
vector< float> svm_svidx;
floatsvm_rho;

;


int main(int argc, char** argv)

Mat src;
string ImgName;

char saveName[256]; //找出来的HardExample图片文件名
//打开原始负样本图片文件列表
ifstream fin("/Users/macbookpro/CLionProjects/pedestrian_detection/img_dir/sample_neg.txt");

ofstream fout("/Users/macbookpro/CLionProjects/pedestrian_detection/img_dir/hard_neg.txt",ios::trunc); //加路径
// int num = 1;
//检测窗口(64,128),块尺寸(16,16),块步长(8,8),cell尺寸(8,8),直方图bin个数9
//HOGDescriptor hog(Size(64,128),Size(16,16),Size(8,8),Size(8,8),9); //HOG检测器,用来计算HOG描述子的
int DescriptorDim; //HOG描述子的维数,由图片大小、检测窗口大小、块大小、细胞单元中直方图bin个数决定
///MySVM svm; //SVM分类器
// Ptr svm = SVM::create(); // 创建分类器
///svm = svm::load("SVM_HOG.xml");
//svm -> save("/Users/macbookpro/CLionProjects/pedestrian_detection/data/SVM_HOG.xml");

Ptr< SVM> svm = Algorithm::load< SVM> ("/Users/macbookpro/CLionProjects/pedestrian_detection/data/SVM_HOG.xml");

/*************************************************************************************************
线性SVM训练完成后得到的XML文件里面,有一个数组,叫做support vector,还有一个数组,叫做alpha,有一个浮点数,叫做rho;
将alpha矩阵同support vector相乘,注意,alpha*supportVector,将得到一个列向量。之后,再该列向量的最后添加一个元素rho。
如此,变得到了一个分类器,利用该分类器,直接替换opencv中行人检测默认的那个分类器(cv::HOGDescriptor::setSVMDetector()),
就可以利用你的训练样本训练出来的分类器进行行人检测了。
***************************************************************************************************/
DescriptorDim = svm-> getVarCount(); //特征向量的维数,即HOG描述子的维数
Mat supportVector = svm-> getSupportVectors(); //支持向量的个数
int supportVectorNum = supportVector.rows;
//cout< < "支持向量个数:"<

vector< float> svm_alpha;
vector< float> svm_svidx;
floatsvm_rho;
svm_rho = svm-> getDecisionFunction(0, svm_alpha, svm_svidx);

Mat alphaMat = Mat::zeros(1, supportVectorNum, CV_32FC1); //alpha向量,长度等于支持向量个数
Mat supportVectorMat = Mat::zeros(supportVectorNum, DescriptorDim, CV_32FC1); //支持向量矩阵
Mat resultMat = Mat::zeros(1, DescriptorDim, CV_32FC1); //alpha向量乘以支持向量矩阵的结果


//将支持向量的数据复制到supportVectorMat矩阵中
//for(int i=0; i
//
////const float * pSVData = https://www.songbingjia.com/android/svm.get_support_vector(i); //返回第i个支持向量的数据指针
//const float * pSVData = https://www.songbingjia.com/android/svm-> getSupportVectors(i);
//for(int j=0; j
//
////cout<
//supportVectorMat.at(i,j) = pSVData[j];
//
//
supportVectorMat = supportVector;

//将alpha向量的数据复制到alphaMat中
///double * pAlphaData = https://www.songbingjia.com/android/svm.get_alpha_vector(); //返回SVM的决策函数中的alpha向量
for(int i = 0; i < supportVectorNum; i++)

alphaMat.at< float> (0,i) = svm_alpha[i];


//计算-(alphaMat * supportVectorMat),结果放到resultMat中
//gemm(alphaMat, supportVectorMat, -1, 0, 1, resultMat); //不知道为什么加负号?
resultMat = -1 * alphaMat * supportVectorMat;

//得到最终的setSVMDetector(const vector& detector)参数中可用的检测子
vector< float> myDetector;
//将resultMat中的数据复制到数组myDetector中
for(int i=0; i< DescriptorDim; i++)

myDetector.push_back(resultMat.at< float> (0,i));


//最后添加偏移量rho,得到检测子
/// myDetector.push_back(svm.get_rho());
myDetector.push_back(svm_rho);
cout< < "检测子维数:"< < myDetector.size()< < endl;

//设置HOGDescriptor的检测子
HOGDescriptor myHOG;
myHOG.setSVMDetector(myDetector);
//myHOG.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

// //保存检测子参数到文件
// ofstream fout("HOGDetectorForOpenCV.txt");
// for(int i=0; i
//
//fout<
//

//namedWindow("people detector", 1);

while(getline(fin,ImgName))

cout< < "处理:"< < ImgName< < endl;
ImgName = "/Users/macbookpro/CLionProjects/pedestrian_detection/normalized_images/train/neg/" + ImgName;
src = https://www.songbingjia.com/android/imread(ImgName,1); //读取图片

Mat img = src.clone(); //复制原图

vector< Rect> found, found_filtered;
//double t = (double)getTickCount();
// run the detector with default parameters. to get a higher hit-rate
// (and more false alarms, respectively), decrease the hitThreshold and
// groupThreshold (set groupThreshold to 0 to turn off the grouping completely).

//对负样本原图进行多尺度检测,检测出的都是误报
myHOG.detectMultiScale(src, found, 0, Size(8,8), Size(32,32), 1.05, 2);
//t = (double)getTickCount() - t;
//printf("tdetection time = %gms\\n", t*1000./cv::getTickFrequency());


//遍历从图像中检测出来的矩形框,得到hard example
size_t i, j;
for( i = 0; i < found.size(); i++ )

Rect r = found[i];
for( j = 0; j < found.size(); j++ )
if( j != i & & (r & found[j]) == r)
break;
if( j == found.size() )
found_filtered.push_back(r);


for( i = 0; i < found_filtered.size(); i++ )

Rect r = found_filtered[i];
// the HOG detector returns slightly larger rectangles than the real objects.
// so we slightly shrink the rectangles to get a nicer output.
//r.x += cvRound(r.width*0.1);
//r.width = cvRound(r.width*0.8);
//r.y += cvRound(r.height*0.07);
//r.height = cvRound(r.height*0.8);

//检测出来的很多矩形框都超出了图像边界,将这些矩形框都强制规范在图像边界内部
if(r.x < 0)
r.x = 0;
if(r.y < 0)
r.y = 0;
if(r.x + r.width > src.cols)
r.width = src.cols - r.x;
if(r.y + r.height > src.rows)
r.height = src.rows - r.y;

//从原图上截取矩形框大小的图片
Mat imgROI = src(Rect(r.x, r.y, r.width, r.height));

//将剪裁出来的图片缩放为64*128大小
resize(imgROI,imgROI,Size(64,128));

//生成hard example图片的文件名
sprintf(saveName,"/Users/macbookpro/CLionProjects/pedestrian_detection/normalized_images/train/hard_neg/hardexample%06d.jpg",HardExampleCount);

//保存文件
imwrite(saveName,imgROI);

//保存裁剪得到的图片名称到txt文件,换行分隔
if(HardExampleCount < cropHardNegNum )
fout < < "hardexample" < < setw(6)< < setfill(0) < < HardExampleCount< < ".png"< < endl;
else
fout < < "hardexample"< < setw(6)< < setfill(0) < < HardExampleCount < < ".png";

//num++;
HardExampleCount++;

//rectangle(src, r.tl(), r.br(), cv::Scalar(0,255,0), 3);

//imshow("people detector", src);
//waitKey(0);


fout.close();

cout< < "HardExampleCount: "< < HardExampleCount - 1< < endl;

return 0;

 



    推荐阅读