天下之事常成于困约,而败于奢靡。这篇文章主要讲述#夏日挑战赛# FFH从零开始的鸿蒙机器学习之旅-NLP情感分析相关的知识,希望能为你提供帮助。
[本文正在参加星光计划3.0-夏日挑战赛]
1.2 导入Standford CoreNLP库
1.2.1我们可以在官网下载工具包StandfordCoreNLP【#夏日挑战赛# FFH从零开始的鸿蒙机器学习之旅-NLP情感分析】
文章图片
1.2.2解压,并引入lib中
文章图片
右键文件夹,点击add as library
2.情感分析 2.1 新建java类,NLP_EMOTION
package com.example.nlpdemo.utils;
import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.neural.rnn.RNNCoreAnnotations;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.sentiment.SentimentCoreAnnotations;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.util.CoreMap;
import java.util.Properties;
public class NLP_EMOTION
//必要: 功能入口
StanfordCoreNLP pipeline = null;
//无关要素 记分用的
public int score;
publicvoid startengine()
//实例化一个对象
Properties props= new Properties();
this.score=0;
//设置所需要的功能,分词,情感分析等,annotators就是前文提到的工具类
props.setProperty("annotators", "tokenize, ssplit, parse, sentiment");
//实现接口
pipeline = new StanfordCoreNLP(props);
public int getScore()
return score;
public String sentiment_emotion(String text)int emotion;
this.score = 0;
String emotion_state;
String str="";
//传入我们需要分析的字符串
Annotation annotation = pipeline.process(text);
int i=0;
for(CoreMap sentence : annotation.get(CoreAnnotations.SentencesAnnotation.class))
//语法树
Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
//情感打分
emotion = RNNCoreAnnotations.getPredictedClass(tree);
i++;
score+=emotion;
//情感状态
emotion_state = sentence.get(SentimentCoreAnnotations.SentimentClass.class);
str +=emotion_state + ": "+ sentence+ " "+emotion +"|";
score = score/i;
return str;
import com.example.nlpdemo.utils.NLP_EMOTION;
import ohos.aafwk.ability.Ability;
import ohos.aafwk.content.Intent;
import ohos.app.Context;
import ohos.hiviewdfx.HiLog;
import ohos.hiviewdfx.HiLogLabel;
import ohos.rpc.*;
import ohos.utils.zson.ZSONObject;
import java.util.HashMap;
import java.util.Map;
public class NLPServiceAbility extends Ability
private static final String TAG = " NLP测试" ;
// 定义日志标签
private static final HiLogLabel LABEL = new HiLogLabel(3, 0xD000F00, TAG);
private Context context;
private MyRemote remote = new MyRemote();
private String str=" " ;
private IRemoteObject remoteObjectHandler;
static NLP_EMOTION nlpPipeline = null;
private int has_new=0;
// FA在请求PA服务时会调用Ability.connectAbility连接PA,连接成功后,需要在onConnect返回一个remote对象,供FA向PA发送消息@Override
br/>@Override
super.onConnect(intent);
return remote.asObject();
public static String test(String s)
String text = s;
nlpPipeline= new NLP_EMOTION();
nlpPipeline.startengine();
String result = nlpPipeline.sentiment_emotion(text);
HiLog.info(LABEL,"yzj"+nlpPipeline.sentiment_emotion(text));
return result;
class MyRemote extends RemoteObject implements IRemoteBroker
private static final int SUCCESS = 0;
private static final int ERROR = 1;
private static final int PLUS = 1001;
private static final int SUBSCRIBE=1005;
privatestaticfinal int NLP =1010;
MyRemote() super("MyService_MyRemote");
@Override
public boolean onRemoteRequest(int code, MessageParcel data, MessageParcel reply, MessageOption option)
switch (code)
case SUBSCRIBE:
// 如果仅支持单FA订阅,可直接覆盖:remoteObjectHandler = data.readRemoteObject();
remoteObjectHandler=data.readRemoteObject();
// startNotify();
Map<
String, Object>
result = new HashMap<
String, Object>
();
result.put("code", SUCCESS);
reply.writeString(ZSONObject.toZSONString(result));
break;
case PLUS:
String dataStr = data.readString();
// 返回结果当前仅支持String,对于复杂结构可以序列化为ZSON字符串上报
Map<
String, Object>
result = new HashMap<
String, Object>
();
result.put("code", SUCCESS);
result.put("abilityResult", "111");
reply.writeString(ZSONObject.toZSONString(result));
break;
case NLP:
str = data.readString();
// 返回结果当前仅支持String,对于复杂结构可以序列化为ZSON字符串上报
HiLog.info(LABEL,str);
Map<
String, Object>
result = new HashMap<
String, Object>
();
result.put("code", SUCCESS);
result.put("abilityResult", "NLP函数成功被调用");
result.put("emotion", test(str));
result.put("score",nlpPipeline.getScore());
str="";
reply.writeString(ZSONObject.toZSONString(result));
break;
default:
Map<
String, Object>
result = new HashMap<
String, Object>
();
result.put("abilityError", ERROR);
reply.writeString(ZSONObject.toZSONString(result));
return false;
return true;
@Override
public IRemoteObject asObject()
return this;
### 3.2 JS侧
+ index.js
```javascript
export default
data:
title: "",
str:"NONE",
inputfield:"nothing",
tips:"none",
score:"0",,
onInit()
this.title = "测测你现在的心情";
this.Subscribekv();
this.NLP();
,
//订阅PA
initAction: function (code)
var actionData =
https://www.songbingjia.com/android/;
var action = ;
action.bundleName ="com.yzj.card";
action.abilityName = "com.example.nlpdemo.NLPServiceAbility";
action.messageCode = code;
action.data = https://www.songbingjia.com/android/actionData;
action.abilityType = 0;
action.syncOption = 0;
return action;
,
Subscribekv:async function()
try
var action = this.initAction(1005);
var that = this;
var _data = ;
var result = await FeatureAbility.subscribeAbilityEvent(action,function (res)//调用订阅服务API
console.info(" 订阅PA返回的结果是: " + res);
console.info("收到返回结果")
this.onShow();
);
console.info(" subscribeCommonEvent result = " + result);
catch (pluginError)
console.error("subscribeCommonEvent error : result= " + JSON.stringify(pluginError));
,
NLP: async function()
var actionData = https://www.songbingjia.com/android/;
actionData=this.str;
var action = ;
action.bundleName = com.yzj.card;
action.abilityName = com.example.nlpdemo.NLPServiceAbility;
action.messageCode = 1010;
action.data = actionData;
action.abilityType = 0;
action.syncOption =0;
var result = await FeatureAbility.callAbility(action);
var ret = JSON.parse(result);
if (ret.code == 0)
console.info(plus result is: + JSON.stringify(ret.abilityResult));
console.info(NLP返回结果+JSON.stringify(ret.emotion));
var ss = JSON.stringify(ret.emotion).replace("|","\\n");
this.inputfield = ss;
console.info("平均emotion:"+JSON.stringify(ret.score));
let rank = parseInt(JSON.stringify(ret.score));
this.score = rank;
if(rank==1)
this.tips="今天或许有些糟糕?";
else if(rank==2)
this.tips = "平平淡淡才是真"else if(rank>
=3)
this.tips ="今天充满欢喜!"else
console.error(plus error code: + JSON.stringify(ret.code));
,
textfield(e)
this.str=e.value;
- index.hml
< div class="container"> < text class="title" style="font-size: 32px; "> title < /text> < input id="infield" type="text" style="width:70%; height: 12%; font-size: 20px; margin-top: 30px; "@change="textfield" > 请输入文本 < /input> < button type="capsule" onclick="NLP" style="width: 150px; height: 60px; margin-top: 30px; "> 测一测 < /button> < textstyle="width: 312px; height: 200px; background-color:cornflowerblue; margin-top: 30px; border-radius: 25px; font-size: 20px; "> inputfield< /text> < text style="font-size:20px; width:80%; height:10%; background-color: aquamarine; margin-top: 30px; border-radius: 25px; "> tips 评分 score < /text> < /div>
## 4.结语
关于机器学习内容还有非常多有意思的事情,这样的模式显然不是最佳的开发模式,5G大的工程文件(哈哈),最好能部署在云端,只能说实现一些功能,但非好用的功能,却也是一次尝试。在这个包下能够开发出很多有意思的功能,也支持中文等多种语言工具,还可以结合华为鸿蒙目前支持的AI功能,欢迎读者尝试和积极沟通。
**或许,我们应该做一些更大胆的尝试?在HarmonyOS,OpenHarmony上从零搭建机器学习模型,再结合分布式能力,穷尽N多台设备的算力?也不知道手上的麒麟990能到何种程度。**(嘻)[想了解更多关于开源的内容,请访问:](https://ost.51cto.com/#bkwz)[51CTO 开源基础软件社区](https://ost.51cto.com#bkwz)https://ost.51cto.com/#bkwz
推荐阅读
- pythonnohup python 提示 ImportError: No module named requests
- linux搭建redis
- 快速了解常用的对称加密算法,再也不用担心面试官的刨根问底
- 机器学习总结笔记
- #云原生征文#深入了解Kubernetes(k8s)Service
- python打印print打印语句当中的f是什么
- Containerd容器运行时(yum安装与二进制安装,哪个更适合你())
- selenium强制等待,隐式等待,显式等待
- client-go gin的简单整合十-Update