Golang|深入理解Golang之context

contextGo并发编程中常用到一种编程模式。本文将从为什么需要context,深入了解context的实现原理,以了解如何使用context
前言
这篇文章将介绍Golang并发编程中常用到一种编程模式:context。本文将从为什么需要context出发,深入了解context的实现原理,以及了解如何使用context
为什么需要context
在并发程序中,由于超时、取消操作或者一些异常情况,往往需要进行抢占操作或者中断后续操作。熟悉channel的朋友应该都见过使用done channel来处理此类问题。比如以下这个例子:

func main() { messages := make(chan int, 10) done := make(chan bool)defer close(messages) // consumer go func() { ticker := time.NewTicker(1 * time.Second) for _ = range ticker.C { select { case <-done: fmt.Println("child process interrupt...") return default: fmt.Printf("send message: %d\n", <-messages) } } }()// producer for i := 0; i < 10; i++ { messages <- i } time.Sleep(5 * time.Second) close(done) time.Sleep(1 * time.Second) fmt.Println("main process exit!") }

上述例子中定义了一个buffer为0的channel done, 子协程运行着定时任务。如果主协程需要在某个时刻发送消息通知子协程中断任务退出,那么就可以让子协程监听这个done channel,一旦主协程关闭done channel,那么子协程就可以推出了,这样就实现了主协程通知子协程的需求。这很好,但是这也是有限的。
如果我们可以在简单的通知上附加传递额外的信息来控制取消:为什么取消,或者有一个它必须要完成的最终期限,更或者有多个取消选项,我们需要根据额外的信息来判断选择执行哪个取消选项。
考虑下面这种情况:假如主协程中有多个任务1, 2, …m,主协程对这些任务有超时控制;而其中任务1又有多个子任务1, 2, …n,任务1对这些子任务也有自己的超时控制,那么这些子任务既要感知主协程的取消信号,也需要感知任务1的取消信号。
如果还是使用done channel的用法,我们需要定义两个done channel,子任务们需要同时监听这两个done channel。嗯,这样其实好像也还行哈。但是如果层级更深,如果这些子任务还有子任务,那么使用done channel的方式将会变得非常繁琐且混乱。
我们需要一种优雅的方案来实现这样一种机制:
  • 上层任务取消后,所有的下层任务都会被取消;
  • 中间某一层的任务取消后,只会将当前任务的下层任务取消,而不会影响上层的任务以及同级任务。
这个时候context就派上用场了。我们首先看看context的结构设计和实现原理。
context是什么
context接口
先看Context接口结构,看起来非常简单。
type Context interface {Deadline() (deadline time.Time, ok bool)Done() <-chan struct{}Err() errorValue(key interface{}) interface{} }

Context接口包含四个方法:
  • Deadline返回绑定当前context的任务被取消的截止时间;如果没有设定期限,将返回ok == false
  • Done 当绑定当前context的任务被取消时,将返回一个关闭的channel;如果当前context不会被取消,将返回nil
  • Err 如果Done返回的channel没有关闭,将返回nil; 如果Done返回的channel已经关闭,将返回非空的值表示任务结束的原因。如果是context被取消,Err将返回Canceled;如果是context超时,Err将返回DeadlineExceeded
  • Value 返回context存储的键值对中当前key对应的值,如果没有对应的key,则返回nil
可以看到Done方法返回的channel正是用来传递结束信号以抢占并中断当前任务;Deadline方法指示一段时间后当前goroutine是否会被取消;以及一个Err方法,来解释goroutine被取消的原因;而Value则用于获取特定于当前任务树的额外信息。而context所包含的额外信息键值对是如何存储的呢?其实可以想象一颗树,树的每个节点可能携带一组键值对,如果当前节点上无法找到key所对应的值,就会向上去父节点里找,直到根节点,具体后面会说到。
再来看看context包中的其他关键内容。
emptyCtx
emptyCtx是一个int类型的变量,但实现了context的接口。emptyCtx没有超时时间,不能取消,也不能存储任何额外信息,所以emptyCtx用来作为context树的根节点。
// An emptyCtx is never canceled, has no values, and has no deadline. It is not // struct{}, since vars of this type must have distinct addresses. type emptyCtx intfunc (*emptyCtx) Deadline() (deadline time.Time, ok bool) { return }func (*emptyCtx) Done() <-chan struct{} { return nil }func (*emptyCtx) Err() error { return nil }func (*emptyCtx) Value(key interface{}) interface{} { return nil }func (e *emptyCtx) String() string { switch e { case background: return "context.Background" case todo: return "context.TODO" } return "unknown empty Context" }var ( background = new(emptyCtx) todo= new(emptyCtx) )func Background() Context { return background }func TODO() Context { return todo }

但我们一般不会直接使用emptyCtx,而是使用由emptyCtx实例化的两个变量,分别可以通过调用BackgroundTODO方法得到,但这两个context在实现上是一样的。那么BackgroundTODO方法得到的context有什么区别呢?可以看一下官方的解释:
// Background returns a non-nil, empty Context. It is never canceled, has no // values, and has no deadline. It is typically used by the main function, // initialization, and tests, and as the top-level Context for incoming // requests.// TODO returns a non-nil, empty Context. Code should use context.TODO when // it's unclear which Context to use or it is not yet available (because the // surrounding function has not yet been extended to accept a Context // parameter).

BackgroundTODO只是用于不同场景下: Background通常被用于主函数、初始化以及测试中,作为一个顶层的context,也就是说一般我们创建的context都是基于Background;而TODO是在不确定使用什么context的时候才会使用。
下面将介绍两种不同功能的基础context类型:valueCtxcancelCtx
valueCtx
valueCtx结构体
type valueCtx struct { Context key, val interface{} }func (c *valueCtx) Value(key interface{}) interface{} { if c.key == key { return c.val } return c.Context.Value(key) }

valueCtx利用一个Context类型的变量来表示父节点context,所以当前context继承了父context的所有信息;valueCtx类型还携带一组键值对,也就是说这种context可以携带额外的信息。valueCtx实现了Value方法,用以在context链路上获取key对应的值,如果当前context上不存在需要的key,会沿着context链向上寻找key对应的值,直到根节点。
WithValue
WithValue用以向context添加键值对:
func WithValue(parent Context, key, val interface{}) Context { if key == nil { panic("nil key") } if !reflect.TypeOf(key).Comparable() { panic("key is not comparable") } return &valueCtx{parent, key, val} }

这里添加键值对不是在原context结构体上直接添加,而是以此context作为父节点,重新创建一个新的valueCtx子节点,将键值对添加在子节点上,由此形成一条context链。获取value的过程就是在这条context链上由尾部上前搜寻:

Golang|深入理解Golang之context
文章图片


cancelCtx
cancelCtx结构体
type cancelCtx struct { Contextmusync.Mutex// protects following fields donechan struct{}// created lazily, closed by first cancel call children map[canceler]struct{} // set to nil by the first cancel call errerror// set to non-nil by the first cancel call }type canceler interface { cancel(removeFromParent bool, err error) Done() <-chan struct{} }

valueCtx类似,cancelCtx中也有一个context变量作为父节点;变量done表示一个channel,用来表示传递关闭信号;children表示一个map,存储了当前context节点下的子节点;err用于存储错误信息表示任务结束的原因。
再来看一下cancelCtx实现的方法:
func (c *cancelCtx) Done() <-chan struct{} { c.mu.Lock() if c.done == nil { c.done = make(chan struct{}) } d := c.done c.mu.Unlock() return d }func (c *cancelCtx) Err() error { c.mu.Lock() err := c.err c.mu.Unlock() return err }func (c *cancelCtx) cancel(removeFromParent bool, err error) { if err == nil { panic("context: internal error: missing cancel error") } c.mu.Lock() if c.err != nil { c.mu.Unlock() return // already canceled } // 设置取消原因 c.err = err 设置一个关闭的channel或者将done channel关闭,用以发送关闭信号 if c.done == nil { c.done = closedchan } else { close(c.done) } // 将子节点context依次取消 for child := range c.children { // NOTE: acquiring the child's lock while holding parent's lock. child.cancel(false, err) } c.children = nil c.mu.Unlock()if removeFromParent { // 将当前context节点从父节点上移除 removeChild(c.Context, c) } }

可以发现cancelCtx类型变量其实也是canceler类型,因为cancelCtx实现了canceler接口。 Done方法和Err方法没必要说了,cancelCtx类型的context在调用cancel方法时会设置取消原因,将done channel设置为一个关闭channel或者关闭channel,然后将子节点context依次取消,如果有需要还会将当前节点从父节点上移除。
WithCancel
WithCancel函数用来创建一个可取消的context,即cancelCtx类型的contextWithCancel返回一个context和一个CancelFunc,调用CancelFunc即可触发cancel操作。直接看源码:
type CancelFunc func()func WithCancel(parent Context) (ctx Context, cancel CancelFunc) { c := newCancelCtx(parent) propagateCancel(parent, &c) return &c, func() { c.cancel(true, Canceled) } }// newCancelCtx returns an initialized cancelCtx. func newCancelCtx(parent Context) cancelCtx { // 将parent作为父节点context生成一个新的子节点 return cancelCtx{Context: parent} }func propagateCancel(parent Context, child canceler) { if parent.Done() == nil { // parent.Done()返回nil表明父节点以上的路径上没有可取消的context return // parent is never canceled } // 获取最近的类型为cancelCtx的祖先节点 if p, ok := parentCancelCtx(parent); ok { p.mu.Lock() if p.err != nil { // parent has already been canceled child.cancel(false, p.err) } else { if p.children == nil { p.children = make(map[canceler]struct{}) } // 将当前子节点加入最近cancelCtx祖先节点的children中 p.children[child] = struct{}{} } p.mu.Unlock() } else { go func() { select { case <-parent.Done(): child.cancel(false, parent.Err()) case <-child.Done(): } }() } }func parentCancelCtx(parent Context) (*cancelCtx, bool) { for { switch c := parent.(type) { case *cancelCtx: return c, true case *timerCtx: return &c.cancelCtx, true case *valueCtx: parent = c.Context default: return nil, false } } }

之前说到cancelCtx取消时,会将后代节点中所有的cancelCtx都取消,propagateCancel即用来建立当前节点与祖先节点这个取消关联逻辑。
  1. 如果parent.Done()返回nil,表明父节点以上的路径上没有可取消的context,不需要处理;
  2. 如果在context链上找到到cancelCtx类型的祖先节点,则判断这个祖先节点是否已经取消,如果已经取消就取消当前节点;否则将当前节点加入到祖先节点的children列表。
  3. 否则开启一个协程,监听parent.Done()child.Done(),一旦parent.Done()返回的channel关闭,即context链中某个祖先节点context被取消,则将当前context也取消。
这里或许有个疑问,为什么是祖先节点而不是父节点?这是因为当前context链可能是这样的:

Golang|深入理解Golang之context
文章图片


当前cancelCtx的父节点context并不是一个可取消的context,也就没法记录children
timerCtx
timerCtx是一种基于cancelCtxcontext类型,从字面上就能看出,这是一种可以定时取消的context
type timerCtx struct { cancelCtx timer *time.Timer // Under cancelCtx.mu.deadline time.Time }func (c *timerCtx) Deadline() (deadline time.Time, ok bool) { return c.deadline, true }func (c *timerCtx) cancel(removeFromParent bool, err error) { 将内部的cancelCtx取消 c.cancelCtx.cancel(false, err) if removeFromParent { // Remove this timerCtx from its parent cancelCtx's children. removeChild(c.cancelCtx.Context, c) } c.mu.Lock() if c.timer != nil { 取消计时器 c.timer.Stop() c.timer = nil } c.mu.Unlock() }

timerCtx内部使用cancelCtx实现取消,另外使用定时器timer和过期时间deadline实现定时取消的功能。timerCtx在调用cancel方法,会先将内部的cancelCtx取消,如果需要则将自己从cancelCtx祖先节点上移除,最后取消计时器。
WithDeadline
WithDeadline返回一个基于parent的可取消的context,并且其过期时间deadline不晚于所设置时间d
func WithDeadline(parent Context, d time.Time) (Context, CancelFunc) { if cur, ok := parent.Deadline(); ok && cur.Before(d) { // The current deadline is already sooner than the new one. return WithCancel(parent) } c := &timerCtx{ cancelCtx: newCancelCtx(parent), deadline:d, } // 建立新建context与可取消context祖先节点的取消关联关系 propagateCancel(parent, c) dur := time.Until(d) if dur <= 0 { c.cancel(true, DeadlineExceeded) // deadline has already passed return c, func() { c.cancel(false, Canceled) } } c.mu.Lock() defer c.mu.Unlock() if c.err == nil { c.timer = time.AfterFunc(dur, func() { c.cancel(true, DeadlineExceeded) }) } return c, func() { c.cancel(true, Canceled) } }

  1. 如果父节点parent有过期时间并且过期时间早于给定时间d,那么新建的子节点context无需设置过期时间,使用WithCancel创建一个可取消的context即可;
  2. 否则,就要利用parent和过期时间d创建一个定时取消的timerCtx,并建立新建context与可取消context祖先节点的取消关联关系,接下来判断当前时间距离过期时间d的时长dur
  3. 如果dur小于0,即当前已经过了过期时间,则直接取消新建的timerCtx,原因为DeadlineExceeded
  4. 否则,为新建的timerCtx设置定时器,一旦到达过期时间即取消当前timerCtx
WithTimeout
WithDeadline类似,WithTimeout也是创建一个定时取消的context,只不过WithDeadline是接收一个过期时间点,而WithTimeout接收一个相对当前时间的过期时长timeout:
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) { return WithDeadline(parent, time.Now().Add(timeout)) }

context的使用
首先使用context实现文章开头done channel的例子来示范一下如何更优雅实现协程间取消信号的同步:
func main() { messages := make(chan int, 10)// producer for i := 0; i < 10; i++ { messages <- i }ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)// consumer go func(ctx context.Context) { ticker := time.NewTicker(1 * time.Second) for _ = range ticker.C { select { case <-ctx.Done(): fmt.Println("child process interrupt...") return default: fmt.Printf("send message: %d\n", <-messages) } } }(ctx)defer close(messages) defer cancel()select { case <-ctx.Done(): time.Sleep(1 * time.Second) fmt.Println("main process exit!") } }

这个例子中,只要让子线程监听主线程传入的ctx,一旦ctx.Done()返回空channel,子线程即可取消执行任务。但这个例子还无法展现context的传递取消信息的强大优势。
阅读过net/http包源码的朋友可能注意到在实现http server时就用到了context, 下面简单分析一下。
1、首先Server在开启服务时会创建一个valueCtx,存储了server的相关信息,之后每建立一条连接就会开启一个协程,并携带此valueCtx
func (srv *Server) Serve(l net.Listener) error {...var tempDelay time.Duration// how long to sleep on accept failure baseCtx := context.Background() // base is always background, per Issue 16220 ctx := context.WithValue(baseCtx, ServerContextKey, srv) for { rw, e := l.Accept()...tempDelay = 0 c := srv.newConn(rw) c.setState(c.rwc, StateNew) // before Serve can return go c.serve(ctx) } }

2、建立连接之后会基于传入的context创建一个valueCtx用于存储本地地址信息,之后在此基础上又创建了一个cancelCtx,然后开始从当前连接中读取网络请求,每当读取到一个请求则会将该cancelCtx传入,用以传递取消信号。一旦连接断开,即可发送取消信号,取消所有进行中的网络请求。
func (c *conn) serve(ctx context.Context) { c.remoteAddr = c.rwc.RemoteAddr().String() ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr()) ...ctx, cancelCtx := context.WithCancel(ctx) c.cancelCtx = cancelCtx defer cancelCtx()...for { w, err := c.readRequest(ctx)...serverHandler{c.server}.ServeHTTP(w, w.req)... } }

3、读取到请求之后,会再次基于传入的context创建新的cancelCtx,并设置到当前请求对象req上,同时生成的response对象中cancelCtx保存了当前context取消方法。
func (c *conn) readRequest(ctx context.Context) (w *response, err error) {...req, err := readRequest(c.bufr, keepHostHeader)...ctx, cancelCtx := context.WithCancel(ctx) req.ctx = ctx...w = &response{ conn:c, cancelCtx:cancelCtx, req:req, reqBody:req.Body, handlerHeader: make(Header), contentLength: -1, closeNotifyCh: make(chan bool, 1),// We populate these ahead of time so we're not // reading from req.Header after their Handler starts // and maybe mutates it (Issue 14940) wants10KeepAlive: req.wantsHttp10KeepAlive(), wantsClose:req.wantsClose(), }... return w, nil }

这样处理的目的主要有以下几点:
  • 一旦请求超时,即可中断当前请求;
  • 在处理构建response过程中如果发生错误,可直接调用response对象的cancelCtx方法结束当前请求;
  • 在处理构建response完成之后,调用response对象的cancelCtx方法结束当前请求。
在整个server处理流程中,使用了一条context链贯穿ServerConnectionRequest,不仅将上游的信息共享给下游任务,同时实现了上游可发送取消信号取消所有下游任务,而下游任务自行取消不会影响上游任务。
总结
【Golang|深入理解Golang之context】context主要用于父子任务之间的同步取消信号,本质上是一种协程调度的方式。另外在使用context时有两点值得注意:上游任务仅仅使用context通知下游任务不再需要,但不会直接干涉和中断下游任务的执行,由下游任务自行决定后续的处理操作,也就是说context的取消操作是无侵入的;context是线程安全的,因为context本身是不可变的(immutable),因此可以放心地在多个协程中传递使用。

    推荐阅读