文章图片
前段时间笔者在团队内部分享了sentinel原理设计与实现,主要讲解了sentinel基础概念和工作原理,工作原理部分大家听了基本都了解了,但是对于sentinel的几个概念及其之间的关系还有挺多同学有点模糊的,趁着这几天比较空,针对sentinel的几个核心概念,做了一些总结,希望能帮助一些sentinel初学者理清这些概念之间的关系。 PS:本文主要参考sentinel源码实现和部分官方文档,建议小伙伴阅读本文的同时也大致看下官方文档和源码,学习效果更好呦 : ) 官方文档讲解的其实还是挺详细的,但是对于这些概念之间的关系可能对于初学者来说还有点不够。资源和规则
估计挺多小伙伴还不知道Sentinel是个什么东东,Sentinel是一个以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性的框架。github地址为: https:// github.com/alibaba/Sent inel
资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。只要通过 Sentinel API 定义的代码,就是资源,能够被 Sentinel 保护起来。大部分情况下,可以使用方法签名,URL,甚至服务名称作为资源名来标示资源。
围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规则。所有规则可以动态实时调整。
sentinel中调用SphU或者SphO的entry方法获取限流资源,不同的是前者获取限流资源失败时会抛BlockException异常,后者或捕获该异常并返回false,二者的实现都是基于CtSph类完成的。简单的sentinel示例:
Entry entry = null;
try {
entry = SphU.entry(KEY);
System.out.println("entry ok...");
} catch (BlockException e1) {
// 获取限流资源失败
} catch (Exception e2) {
// biz exception
} finally {
if (entry != null) {
entry.exit();
}
}
?
Entry entry = null;
if (SphO.entry(KEY)) {
System.out.println("entry ok");
} else {
// 获取限流资源失败
}
SphU和SphO二者没有孰优孰略问题,底层实现是一样的,根据不同场景选举合适的一个即可。看了简单示例之后,一起来看下sentinel中的核心概念,便于理解后续内容。
核心概念 Resource
resource是sentinel中最重要的一个概念,sentinel通过资源来保护具体的业务代码或其他后方服务。sentinel把复杂的逻辑给屏蔽掉了,用户只需要为受保护的代码或服务定义一个资源,然后定义规则就可以了,剩下的通通交给sentinel来处理了。并且资源和规则是解耦的,规则甚至可以在运行时动态修改。定义完资源后,就可以通过在程序中埋点来保护你自己的服务了,埋点的方式有两种:
- try-catch 方式(
通过 SphU.entry(...)
),当 catch 到BlockException时执行异常处理(或fallback) - if-else 方式(
通过 SphO.entry(...)
),当返回 false 时执行异常处理(或fallback)
在sentinel中具体表示资源的类是:ResourceWrapper ,他是一个抽象的包装类,包装了资源的 Name 和EntryType。他有两个实现类,分别是:StringResourceWrapper 和 MethodResourceWrapper。顾名思义,StringResourceWrapper 是通过对一串字符串进行包装,是一个通用的资源包装类,MethodResourceWrapper 是对方法调用的包装。
Context
Context是对资源操作时的上下文环境,每个资源操作(
针对Resource进行的entry/exit
)必须属于一个Context,如果程序中未指定Context,会创建name为"sentinel_default_context"的默认Context。一个Context生命周期内可能有多个资源操作,Context生命周期内的最后一个资源exit时会清理该Context,这也预示这真个Context生命周期的结束。Context主要属性如下:public class Context {
// context名字,默认名字 "sentinel_default_context"
private final String name;
// context入口节点,每个context必须有一个entranceNode
private DefaultNode entranceNode;
// context当前entry,Context生命周期中可能有多个Entry,所有curEntry会有变化
private Entry curEntry;
// The origin of this context (usually indicate different invokers, e.g. service consumer name or origin IP).
private String origin = "";
private final boolean async;
}
注意:一个Context生命期内Context只能初始化一次,因为是存到ThreadLocal中,并且只有在非null时才会进行初始化。
【sentinel|sentinel 官方文档_sentinel 核心概念】如果想在调用 SphU.entry() 或 SphO.entry() 前,自定义一个context,则通过ContextUtil.enter()方法来创建。context是保存在ThreadLocal中的,每次执行的时候会优先到ThreadLocal中获取,为null时会调用
MyContextUtil.myEnter(Constants.CONTEXT_DEFAULT_NAME, "", resourceWrapper.getType())
创建一个context。当Entry执行exit方法时,如果entry的parent节点为null,表示是当前Context中最外层的Entry了,此时将ThreadLocal中的context清空。Entry
刚才在Context身影中也看到了Entry的出现,现在就谈谈Entry。每次执行 SphU.entry() 或 SphO.entry() 都会返回一个Entry,Entry表示一次资源操作,内部会保存当前invocation信息。在一个Context生命周期中多次资源操作,也就是对应多个Entry,这些Entry形成parent/child结构保存在Entry实例中,entry类CtEntry结构如下:
class CtEntry extends Entry {
protected Entry parent = null;
protected Entry child = null;
?
protected ProcessorSlot
Entry实例代码中出现了Node,这个又是什么东东呢 :(,咱们接着往下看:
DefaultNode
Node(关于StatisticNode的讨论放到下一小节)默认实现类DefaultNode,该类还有一个子类EntranceNode;context有一个entranceNode属性,Entry中有一个curNode属性。
- EntranceNode:该类的创建是在初始化Context时完成的(ContextUtil.trueEnter方法),注意该类是针对Context维度的,也就是一个context有且仅有一个EntranceNode。
- DefaultNode:该类的创建是在NodeSelectorSlot.entry完成的,当不存在context.name对应的DefaultNode时会新建(new DefaultNode(resourceWrapper, null),对应resouce)并保存到本地缓存(NodeSelectorSlot中private volatile Map map);获取到context.name对应的DefaultNode后会将该DefaultNode设置到当前context的curEntry.curNode属性,也就是说,在NodeSelectorSlot中是一个context有且仅有一个DefaultNode。
文章图片
DefaultNode结构如下:
public class DefaultNode extends StatisticNode {
private ResourceWrapper id;
/**
* The list of all child nodes.
* 子节点集合,注意:目前版本sentinel中子节点个数最多为1
*/
private volatile Set childList = new HashSet<>();
/**
* Associated cluster node.
*/
private ClusterNode clusterNode;
}
一个Resouce只有一个clusterNode,多个defaultNode对应一个clusterNode,如果defaultNode.clusterNode为null,则在ClusterBuilderSlot.entry中会进行初始化。
同一个Resource,对应同一个ProcessorSlotChain,这块处理逻辑在lookProcessChain方法中,如下:
ProcessorSlot
StatisticNode
StatisticNode中保存了资源的实时统计数据(基于滑动时间窗口机制),通过这些统计数据,sentinel才能进行限流、降级等一系列操作。StatisticNode属性如下:
public class StatisticNode implements Node {
/**
* 秒级的滑动时间窗口(时间窗口单位500ms)
*/
private transient volatile Metric rollingCounterInSecond = new ArrayMetric(SampleCountProperty.SAMPLE_COUNT,
IntervalProperty.INTERVAL);
/**
* 分钟级的滑动时间窗口(时间窗口单位1s)
*/
private transient Metric rollingCounterInMinute = new ArrayMetric(60, 60 * 1000, false);
/**
* The counter for thread count.
* 线程个数用户触发线程数流控
*/
private LongAdder curThreadNum = new LongAdder();
}
public class ArrayMetric implements Metric {
private final LeapArray data;
}
public class MetricBucket {
// 保存统计值
private final LongAdder[] counters;
// 最小rt
private volatile long minRt;
}
其中MetricBucket.counters数组大小为MetricEvent枚举值的个数,每个枚举对应一个统计项,比如PASS表示通过个数,限流可根据通过的个数和设置的限流规则配置count大小比较,得出是否触发限流操作,所有枚举值如下:
public enum MetricEvent {
PASS, // Normal pass.
BLOCK, // Normal block.
EXCEPTION,
SUCCESS,
RT,
OCCUPIED_PASS
}
Slot
slot是另一个sentinel中非常重要的概念,sentinel的工作流程就是围绕着一个个插槽所组成的插槽链来展开的。需要注意的是每个插槽都有自己的职责,他们各司其职完好的配合,通过一定的编排顺序,来达到最终的限流降级的目的。默认的各个插槽之间的顺序是固定的,因为有的插槽需要依赖其他的插槽计算出来的结果才能进行工作。
但是这并不意味着我们只能按照框架的定义来,sentinel 通过 SlotChainBuilder 作为 SPI 接口,使得 Slot Chain 具备了扩展的能力。我们可以通过实现 SlotsChainBuilder 接口加入自定义的 slot 并自定义编排各个 slot 之间的顺序,从而可以给 sentinel 添加自定义的功能。
那SlotChain是在哪创建的呢?是在 CtSph.lookProcessChain() 方法中创建的,并且该方法会根据当前请求的资源先去一个静态的HashMap中获取,如果获取不到才会创建,创建后会保存到HashMap中。这就意味着,同一个资源会全局共享一个SlotChain。默认生成ProcessorSlotChain为:
// DefaultSlotChainBuilder
public ProcessorSlotChain build() {
ProcessorSlotChain chain = new DefaultProcessorSlotChain();
chain.addLast(new NodeSelectorSlot());
chain.addLast(new ClusterBuilderSlot());
chain.addLast(new LogSlot());
chain.addLast(new StatisticSlot());
chain.addLast(new SystemSlot());
chain.addLast(new AuthoritySlot());
chain.addLast(new FlowSlot());
chain.addLast(new DegradeSlot());
?
return chain;
到这里本文结束了,谢谢小伙伴们的阅读~ 在理解了这些核心概念之后,相信聪明的你回过头再看sentinel源码就不会觉得有很大难度了 : )
往期精选
- 你的Redis有类转换异常么
- Redis 基础数据结构
- 别再问我ConcurrentHashMap了
- 分布式锁设计与实现
- ConcurrentHashMap竟然也有死循环问题?
- 你的ThreadLocal线程安全么
- MySQL基础概念知多少
欢迎小伙伴关注【TopCoder】阅读更多精彩好文。
文章图片
推荐阅读
- spring|SpringCloudAlibaba+Vue2.0搭建博客项目
- sentinel|07_sentinel—QPS—流控规则
- sentinel源码系列|第四篇(Sentinel限流核心逻辑过程分析)
- 开发技能点|Sentinel 概述
- 微服务|SpringCloud Alibaba微服务实战四 - 限流熔断
- 入门指南|redis-Sentinel(哨兵机制)你学废了么()
- Spring|Spring Cloud Alibaba 微服务组件 Sentinel 服务保护(七)
- Redis Sentinel 实现高可用
- redis 哨兵模式 sentinel