任务链接:https://wx.zsxq.com/dweb/#/index/222248424811
深度学习视频推荐1:https://www.icourse163.org/learn/PKU-1002536002?tid=1003797005#/learn/content
深度学习视频推荐2:https://mooc.study.163.com/course/2001281002#/info
github:https://github.com/jiayinZH(textCNN代码及测试数据等会上传)
1.激活函数种类
神经网络中激活函数的主要作用是提供网络的非线性建模能力。假设一个神经网络中仅包含线性卷积和全连接运算,那么该网络仅能够表达线性映射,即便增加网络的深度也依旧还是线性映射,难以有效建模实际环境中非线性分布的数据。加入(非线性)激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。因此,激活函数是深度神经网络中不可或缺的部分。常见的激活函数有sigmoid、tanh、ReLU、softmax等等。
参考文章1:http://blog.csdn.net/u014595019/article/details/52562159
参考文章2:https://zhuanlan.zhihu.com/p/22142013
2.深度学习正则化种类
正则化的作用是选择经验风险与模型复杂度同时较小的模型
参考文章:https://blog.csdn.net/qq_16137569/article/details/81584165
3.深度学习优化方法
参考文章:https://blog.csdn.net/qq_21460525/article/details/70146665
4.代码展示
使用THUCNews数据集实现textCNN
Text类实现有参考https://github.com/gaussic/text-classification-cnn-rnn/blob/master/data/cnews_loader.py
import os
import numpy as np
import tensorflow as tf
from collections import Counter
import tensorflow.contrib.keras as krclass Text(object):
# 打开文件
def open_file(self, filename, mode='r'):
return open(filename, mode, encoding='utf-8', errors='ignore')# 读取文件
def read_file(self, filename):
contents, labels = [], []
with self.open_file(filename) as f:
for line in f:
try:
label, content = line.strip().split('\t')
if content:
contents.append(list(content))
labels.append(label)
except:
pass
return contents, labels# 读取词汇表,一个词对应一个id
def read_vocab(self, vocab_dir):
with self.open_file(vocab_dir) as fp:
words = [_.strip() for _ in fp.readlines()]
word_to_id = dict(zip(words, range(len(words))))
return words, word_to_id# 读取分类目录,一个类别对应一个id
def read_category(self):
categories = ['体育', '财经', '房产', '家居', '教育', '科技', '时尚', '时政', '游戏', '娱乐']
cat_to_id = dict(zip(categories, range(len(categories))))
return categories, cat_to_id# 根据训练集构建词汇表,存储
def build_vocab(self, train_dir, vocab_dir, vocab_size=5000):
data_train, _ = self.read_file(train_dir)all_data = https://www.it610.com/article/[]
for content in data_train:
all_data.extend(content)counter = Counter(all_data)
count_pairs = counter.most_common(vocab_size - 1)
words, _ = list(zip(*count_pairs))
# 添加一个 来将所有文本pad为同一长度
words = [''] + list(words)
self.open_file(vocab_dir, mode='w').write('\n'.join(words) + '\n')# 将文件转换为id表示
def process_file(self, filename, word_to_id, cat_to_id, max_length=600):
contents, labels = self.read_file(filename)data_id, label_id = [], []
for i in range(len(contents)):
data_id.append([word_to_id[x] for x in contents[i] if x in word_to_id])
label_id.append(cat_to_id[labels[i]])# 使用keras提供的pad_sequences来将文本转为固定长度,不足的补0
x_pad = kr.preprocessing.sequence.pad_sequences(data_id, max_length)
y_pad = kr.utils.to_categorical(label_id, num_classes=len(cat_to_id))# 将标签转换为one-hot表示return x_pad, y_pad# 获取数据
def get_data(self, filenname, text_length):
vocab_dir = './data/cnews/cnews.vocab.txt'
categories, cat_to_id = text.read_category()
words, word_to_id = text.read_vocab(vocab_dir)
x, y = text.process_file(filenname, word_to_id, cat_to_id, text_length)
return x, yclass TextCNN(object):
def __init__(self):
self.text_length = 600# 文本长度
self.num_classer = 10# 类别数self.vocab_size = 5000# 词汇表达小
self. word_vec_dim = 64# 词向量维度self.filter_width = 2# 卷积核尺寸
self.filter_width_list = [2, 3, 4]# 卷积核尺寸列表
self.num_filters = 5# 卷积核数目self.dropout_prob = 0.5# dropout概率
self.learning_rate = 0.005# 学习率
self.iter_num = 10# 迭代次数
self.batch_size = 64# 每轮迭代训练多少数据
self.model_save_path = './model/'# 模型保存路径
self.model_name = 'mnist_model'# 模型的命名
self.embedding = tf.get_variable('embedding', [self.vocab_size, self.word_vec_dim])self.fc1_size = 32# 第一层全连接的神经元个数
self.fc2_size = 64# 第二层全连接的神经元个数
self.fc3_size = 10# 第三层全连接的神经元个数# 模型1,使用多种卷积核
def model_1(self, x, is_train):
# embedding层
embedding_res = tf.nn.embedding_lookup(self.embedding, x)pool_list = []
for filter_width in self.filter_width_list:
# 卷积层
conv_w = self.get_weight([filter_width, self.word_vec_dim, self.num_filters], 0.01)
conv_b = self.get_bias([self.num_filters])
conv = tf.nn.conv1d(embedding_res, conv_w, stride=1, padding='VALID')
conv_res = tf.nn.relu(tf.nn.bias_add(conv, conv_b))# 最大池化层
pool_list.append(tf.reduce_max(conv_res, reduction_indices=[1]))
pool_res = tf.concat(pool_list, 1)# 第一个全连接层
fc1_w = self.get_weight([self.num_filters * len(self.filter_width_list), self.fc1_size], 0.01)
fc1_b = self.get_bias([self.fc1_size])
fc1_res = tf.nn.relu(tf.matmul(pool_res, fc1_w) + fc1_b)
if is_train:
fc1_res = tf.nn.dropout(fc1_res, 0.5)# 第二个全连接层
fc2_w = self.get_weight([self.fc1_size, self.fc2_size], 0.01)
fc2_b = self.get_bias([self.fc2_size])
fc2_res = tf.nn.relu(tf.matmul(fc1_res, fc2_w) + fc2_b)
if is_train:
fc2_res = tf.nn.dropout(fc2_res, 0.5)# 第三个全连接层
fc3_w = self.get_weight([self.fc2_size, self.fc3_size], 0.01)
fc3_b = self.get_bias([self.fc3_size])
fc3_res = tf.matmul(fc2_res, fc3_w) + fc3_breturn fc3_res# 模型2,使用一个卷积核
def model_2(self, x, is_train):
# embedding层
embedding_res = tf.nn.embedding_lookup(self.embedding, x)# 卷积层
conv_w = self.get_weight([self.filter_width, self.word_vec_dim, self.num_filters], 0.01)
conv_b = self.get_bias([self.num_filters])
conv = tf.nn.conv1d(embedding_res, conv_w, stride=1, padding='VALID')
conv_res = tf.nn.relu(tf.nn.bias_add(conv, conv_b))# 最大池化层
pool_res = tf.reduce_max(conv_res, reduction_indices=[1])# 第一个全连接层
fc1_w = self.get_weight([self.num_filters, self.fc1_size], 0.01)
fc1_b = self.get_bias([self.fc1_size])
fc1_res = tf.nn.relu(tf.matmul(pool_res, fc1_w) + fc1_b)
if is_train:
fc1_res = tf.nn.dropout(fc1_res, 0.5)# 第二个全连接层
fc2_w = self.get_weight([self.fc1_size, self.fc2_size], 0.01)
fc2_b = self.get_bias([self.fc2_size])
fc2_res = tf.nn.relu(tf.matmul(fc1_res, fc2_w) + fc2_b)
if is_train:
fc2_res = tf.nn.dropout(fc2_res, 0.5)# 第三个全连接层
fc3_w = self.get_weight([self.fc2_size, self.fc3_size], 0.01)
fc3_b = self.get_bias([self.fc3_size])
fc3_res = tf.matmul(fc2_res, fc3_w) + fc3_breturn fc3_res# 定义初始化网络权重函数
def get_weight(self, shape, regularizer):
w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))# 为权重加入L2正则化
return w# 定义初始化偏置项函数
def get_bias(self, shape):
b = tf.Variable(tf.ones(shape))
return b# 生成批次数据
def batch_iter(self, x, y):
data_len = len(x)
num_batch = int((data_len - 1) / self.batch_size) + 1
indices = np.random.permutation(np.arange(data_len))# 随机打乱一个数组
x_shuffle = x[indices]# 随机打乱数据
y_shuffle = y[indices]# 随机打乱数据
for i in range(num_batch):
start = i * self.batch_size
end = min((i + 1) * self.batch_size, data_len)
yield x_shuffle[start:end], y_shuffle[start:end]# 训练
def train(cnn, X_train, y_train):
x = tf.placeholder(tf.int32, [None, cnn.text_length])
y = tf.placeholder(tf.float32, [None, cnn.num_classer])
y_pred = cnn.model_1(x, True)# 声明一个全局计数器,并输出化为0,存放到目前为止模型优化迭代的次数
global_step = tf.Variable(0, trainable=False)# 损失函数,交叉熵
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=y_pred, labels=y)
loss = tf.reduce_mean(cross_entropy)# 优化器
train_step = tf.train.AdamOptimizer(learning_rate=cnn.learning_rate).minimize(loss, global_step=global_step)saver = tf.train.Saver()# 实例化一个保存和恢复变量的saver# 创建一个会话,并通过python中的上下文管理器来管理这个会话
with tf.Session() as sess:
# 初始化计算图中的变量
init_op = tf.global_variables_initializer()
sess.run(init_op)# 通过checkpoint文件定位到最新保存的模型
ckpt = tf.train.get_checkpoint_state(cnn.model_save_path)
if ckpt and ckpt.model_checkpoint_path:
# 加载最新的模型
saver.restore(sess, ckpt.model_checkpoint_path)# 循环迭代,每次迭代读取一个batch_size大小的数据
for i in range(cnn.iter_num):
batch_train = cnn.batch_iter(X_train, y_train)
for x_batch, y_batch in batch_train:
loss_value, step = sess.run([loss, train_step], feed_dict={x: x_batch, y: y_batch})
print('After %d training step(s), loss on training batch is %g.' % (i, loss_value))
saver.save(sess, os.path.join(cnn.model_save_path, cnn.model_name), global_step=global_step)# 预测
def predict(cnn, X_test, y_test):
# 创建一个默认图,在该图中执行以下操作
# with tf.Graph.as_default():
x = tf.placeholder(tf.int32, [None, cnn.text_length])
y = tf.placeholder(tf.float32, [None, cnn.num_classer])
y_pred = cnn.model_1(x, False)saver = tf.train.Saver()# 实例化一个保存和恢复变量的savercorrect_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_pred, 1))# 判断预测值和实际值是否相同
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))# 求平均得到准确率with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(cnn.model_save_path)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)# 根据读入的模型名字切分出该模型是属于迭代了多少次保存的
global_step = ckpt.model_checkpoint_path.split('/')[-1].split(' ')[-1]# 计算出测试集上准确
accuracy_score = sess.run(accuracy, feed_dict={x: X_test, y: y_test})
print('After %s training step(s), test accuracy = %g' % (global_step, accuracy_score))
else:
print('No checkpoint file found')
returnif __name__ == '__main__':
text_length = 600# 文本长度
text = Text()
X_train, y_train = text.get_data('./data/cnews/cnews.train.txt', text_length)# X_train shape (50000, 300)
X_test, y_test = text.get_data('./data/cnews/cnews.test.txt', text_length)# X_test shape (10000, 300)
X_val, y_val = text.get_data('./data/cnews/cnews.val.txt', text_length)# X_val shape (5000, 300)is_train = True
cnn = TextCNN()
if is_train:
train(cnn, X_train, y_train)
else:
predict(cnn, X_test, y_test)
【自然语言处理|NLP实践-Task5】
推荐阅读
- C语言学习|第十一届蓝桥杯省赛 大学B组 C/C++ 第一场
- paddle|动手从头实现LSTM
- pytorch|使用pytorch从头实现多层LSTM
- 推荐系统论文进阶|CTR预估 论文精读(十一)--Deep Interest Evolution Network(DIEN)
- pytorch|YOLOX 阅读笔记
- 前沿论文|论文精读(Neural Architecture Search without Training)
- 联邦学习|【阅读笔记】Towards Efficient and Privacy-preserving Federated Deep Learning
- OpenCV|OpenCV-Python实战(18)——深度学习简介与入门示例
- 深度学习|深度学习笔记总结
- 人工智能|hugginface-introduction 案例介绍