STM32F107+LWIP+FreeRTOS

STM32F107+LWIP+FreeRTOS 前言 【STM32F107+LWIP+FreeRTOS】最近在学习LWIP的协议栈,打算移植到FreeRTOS上
网上找了资料,原子的用的是F4的平台,LWIP1.4.1的版本,操作系统使用的是UCOS的,野火使用的是LWIP2.0.1的版本,操作系统使用的是FreeRTOS的,但是用的是HAL库,不太适合我这种初学的。所以只有自己捣鼓了。
本人使用:STM32F107+LWIP1.4.1+FreeRTOS9.0.0
先来了解下LWIP 链接: link.
本文使用的网卡PHY芯片型号是DP83848,工作在MII接口模式,时钟频率是25MHz。
现在的LwIP版本已经发展到了lwIP 2.0.3 版。
但是看了具体的代码后发现一些跟1.4.1对比之下不同之处,其中包含但不全部:
1、IPv4和IPv6的实现代码混合起来,而1.4.1是分开的,通过预处理宏可以分开编译。
2、增加了一些常用的网络组件或应用程序,其中包括了基于tcp接口实现的MQTT协议。
本人也曾试图移植lwIP 2.0.2,发现IPv6实现会被编译进去,并且由此产生一些函数调用问题,在我们的固件库中以及mdk的库中不支持相关函数,另外,本项目用的芯片并不支持IPv6,而相关代码会增加ROM空间的占用,没有必要,而LwIP2.0.2以上的版本所带的MQTT协议实现也可以移植过来到LwIP-1.4.1上使用。
因此还是选用LwIP的1.4.1这个经典版本。但后面的MQTT协议实现没有用LwIP2.0.2版的实现代码,而是比较接近paho.mqtt.embedded-c版的一个实现。
以下是具体移植过程:
LwIP的官方网站:http://savannah.nongnu.org/projects/lwip/
LwIP-1.4.1下载地址:http://download.savannah.nongnu.org/releases/lwip/lwip-1.4.1.zip
或:http://ftp.yzu.edu.tw/nongnu/lwip/lwip-1.4.1.zip
或:https://gitee.com/null_926_6734/CongXiangYingGuanFangHuoQiJingXiangXiaZaiDeMouXieYuanDaiMa/raw/master/lwip-1.4.1.zip
contrib-1.4.1.zip
contrib-1.4.1里面含有官方的移植示例,有windows和unix操作系统下的移植,和某些非操作系统的移植。
在本项目的移植中需要用到一些头文件,可以在contrib-1.4.1中找到。
无操作系统的移植可以参考原子的 我是用的PHY芯片的83848,用的是RMII的模式工作的。
有操作系统的移植 先来看看添加的文件
STM32F107+LWIP+FreeRTOS
文章图片

STM32F107+LWIP+FreeRTOS
文章图片

STM32F107+LWIP+FreeRTOS
文章图片

STM32F107+LWIP+FreeRTOS
文章图片

需要修改的文件 修改sys_arch.c文件

#include "lwip/debug.h" #include "lwip/def.h" #include "lwip/sys.h" #include "lwip/mem.h" #include "lwip/mem.h" #include "arch/sys_arch.h"#define SYS_ARCH_BLOCKING_TICKTIMEOUT((portTickType)10000)/* This is the number of threads that can be started with sys_thread_new() */ #define SYS_THREAD_MAX 6/* Structure associating a thread to a struct sys_timeouts */ /* 将线程与结构sys_timeouts关联的结构 */ struct TimeoutlistPerThread { sys_thread_t pid; /* The thread id */ }; /* Thread & struct sys_timeouts association statically allocated per thread. Note: SYS_THREAD_MAX is the max number of thread created by sys_thread_new() that can run simultaneously; it is defined in conf_lwip_threads.h. */ static struct TimeoutlistPerThread Threads_TimeoutsList[SYS_THREAD_MAX]; /* Number of active threads. */ static u16_t NbActiveThreads = 0; /** * \brief Initialize the sys_arch layer. */ void sys_init(void) { int i; /* Initialize the the per-thread sys_timeouts structures make sure there are no valid pids in the list */ for (i = 0; i < SYS_THREAD_MAX; i++) { Threads_TimeoutsList[i].pid = 0; } /* Keep track of how many threads have been created */ NbActiveThreads = 0; }/** * \brief Creates and returns a new semaphore. * * \param sem Pointer to the semaphore. * \param count Initial state of the semaphore. * * \return ERR_OK for OK, other value indicates error. */ err_t sys_sem_new(sys_sem_t *sem, u8_t count) { err_t err_sem = ERR_MEM; /* Sanity check */ if (sem != NULL) { portENTER_CRITICAL(); vSemaphoreCreateBinary( *sem ); if (*sem != SYS_SEM_NULL) { #if SYS_STATS lwip_stats.sys.sem.used++; if (lwip_stats.sys.sem.used > lwip_stats.sys.sem.max) { lwip_stats.sys.sem.max = lwip_stats.sys.sem.used; }#endif /* SYS_STATS */if (0 == count) { /* Means we want the sem to be unavailable at init state. */ xSemaphoreTake( *sem, 1); }err_sem = ERR_OK; }portEXIT_CRITICAL(); } return err_sem; }/** * \brief Frees a semaphore created by sys_sem_new. * * \param sem Pointer to the semaphore. */ void sys_sem_free(sys_sem_t *sem) { /* Sanity check */ if (sem != NULL) { if (SYS_SEM_NULL != *sem) { #if SYS_STATS lwip_stats.sys.sem.used--; #endif /* SYS_STATS */ vQueueDelete( *sem ); } } }/** * \brief Signals (or releases) a semaphore. * * \param sem Pointer to the semaphore. */ void sys_sem_signal(sys_sem_t *sem) { /* Sanity check */ if (sem != NULL) { xSemaphoreGive( *sem ); } }/** * \brief Blocks the thread while waiting for the semaphore to be signaled. * Note that there is another function sys_sem_wait in sys.c, but it is a wrapper * for the sys_arch_sem_wait function. Please note that it is important for the * semaphores to return an accurate count of elapsed milliseconds, since they are * used to schedule timers in lwIP. * * \param sem Pointer to the semaphore. * \param timeout The timeout parameter specifies how many milliseconds the * function should block before returning; if the function times out, it should * return SYS_ARCH_TIMEOUT. If timeout=0, then the function should block * indefinitely. If the function acquires the semaphore, it should return how * many milliseconds expired while waiting for the semaphore. * * \return SYS_ARCH_TIMEOUT if times out, ERR_MEM for semaphore erro otherwise * return the milliseconds expired while waiting for the semaphore. */ u32_t sys_arch_sem_wait(sys_sem_t *sem, u32_t timeout) { portTickType TickStart; portTickType TickStop; /* Express the timeout in OS tick. */ portTickType TickElapsed = (portTickType)(timeout / portTICK_RATE_MS); /* Sanity check */ if (sem != NULL) { if (timeout && !TickElapsed) { TickElapsed = 1; /* Wait at least one tick */ }if (0 == TickElapsed) { TickStart = xTaskGetTickCount(); /* If timeout=0, then the function should block indefinitely */ while (pdFALSE == xSemaphoreTake( *sem, SYS_ARCH_BLOCKING_TICKTIMEOUT )) { } } else { TickStart = xTaskGetTickCount(); if (pdFALSE == xSemaphoreTake( *sem, TickElapsed )) { /* if the function times out, it should return SYS_ARCH_TIMEOUT */ return(SYS_ARCH_TIMEOUT); } }/* If the function acquires the semaphore, it should return how many milliseconds expired while waiting for the semaphore */ TickStop = xTaskGetTickCount(); /* Take care of wrap-around */ if (TickStop >= TickStart) { TickElapsed = TickStop - TickStart; } else { TickElapsed = portMAX_DELAY - TickStart + TickStop; }return(TickElapsed * portTICK_RATE_MS); } else { return (u32_t)ERR_MEM; } }#ifndef sys_sem_valid /** * \brief Check if a sempahore is valid/allocated. * * \param sem Pointer to the semaphore. * * \return Semaphore number on valid, 0 for invalid. */ int sys_sem_valid(sys_sem_t *sem) { return ((int)(*sem)); }#endif#ifndef sys_sem_set_invalid /** * \brief Set a semaphore invalid. * * \param sem Pointer to the semaphore. */ void sys_sem_set_invalid(sys_sem_t *sem) { *sem = NULL; } #endif/** * \brief Creates an empty mailbox for maximum "size" elements. Elements stored * in mailboxes are pointers. * * \param mBoxNew Pointer to the new mailbox. * \param size Maximum "size" elements. * * \return ERR_OK if successfull or ERR_MEM on error. */ err_t sys_mbox_new(sys_mbox_t *mBoxNew, int size ) { err_t err_mbox = ERR_MEM; /* Sanity check */ if (mBoxNew != NULL) { *mBoxNew = xQueueCreate( size, sizeof(void *)); #if SYS_STATS if (SYS_MBOX_NULL != *mBoxNew) { lwip_stats.sys.mbox.used++; if (lwip_stats.sys.mbox.used > lwip_stats.sys.mbox.max) { lwip_stats.sys.mbox.max = lwip_stats.sys.mbox.used; } }#endif /* SYS_STATS */ err_mbox = ERR_OK; } return(err_mbox); }/** * \brief Deallocates a mailbox. * If there are messages still present in the mailbox when the mailbox is * deallocated, it is an indication of a programming error in lwIP and the * developer should be notified. * * \param mbox Pointer to the new mailbox. */ void sys_mbox_free(sys_mbox_t *mbox) { /* Sanity check */ if (mbox != NULL) { if (SYS_MBOX_NULL != *mbox) { #if SYS_STATS lwip_stats.sys.mbox.used--; #endif /* SYS_STATS */ vQueueDelete( *mbox ); } } }/** * \brief Posts the "msg" to the mailbox. This function have to block until the * "msg" is really posted. * * \param mbox Pointer to the mailbox. * \param msg Pointer to the message to be post. */ void sys_mbox_post(sys_mbox_t *mbox, void *msg) { /* Sanit check */ if (mbox != NULL) { while (pdTRUE != xQueueSend( *mbox, &msg, SYS_ARCH_BLOCKING_TICKTIMEOUT )) { } } }/** * \brief Try to posts the "msg" to the mailbox. * * \param mbox Pointer to the mailbox. * \param msg Pointer to the message to be post. * * \return ERR_MEM if the mailbox is full otherwise ERR_OK if the "msg" is posted. */ err_t sys_mbox_trypost(sys_mbox_t *mbox, void *msg) { err_t err_mbox = ERR_MEM; /* Sanity check */ if (mbox != NULL) { if (errQUEUE_FULL != xQueueSend( *mbox, &msg, 0 )) { err_mbox = ERR_OK; } } return (err_mbox); }/** * \brief Blocks the thread until a message arrives in the mailbox, but does not * block the thread longer than "timeout" milliseconds (similar to the * sys_arch_sem_wait() function). * * \param mbox Pointer to the mailbox. * \param msg A result parameter that is set by the function (i.e., by doing * "*msg = ptr"). The "msg" parameter maybe NULL to indicate that the message * should be dropped. * \timeout 0 indicates the thread should be blocked until a message arrives. * * \return Number of milliseconds spent waiting or SYS_ARCH_TIMEOUT if there was * a timeout. Or ERR_MEM if invalid pointer to message box. */ u32_t sys_arch_mbox_fetch(sys_mbox_t *mbox, void **msg, u32_t timeout) { portTickType TickStart; portTickType TickStop; void *tempoptr; /* Express the timeout in OS tick. */ portTickType TickElapsed = (portTickType)(timeout / portTICK_RATE_MS); /* Sanity check */ if (mbox != NULL) { if (timeout && !TickElapsed) { TickElapsed = 1; /* Wait at least one tick */ }if (msg == NULL) { msg = &tempoptr; }/* NOTE: INCLUDE_xTaskGetSchedulerState must be set to 1 in * FreeRTOSConfig.h for xTaskGetTickCount() to be available */ if (0 == TickElapsed) { TickStart = xTaskGetTickCount(); /* If "timeout" is 0, the thread should be blocked until * a message arrives */ while (pdFALSE == xQueueReceive( *mbox, &(*msg), SYS_ARCH_BLOCKING_TICKTIMEOUT )) { } } else { TickStart = xTaskGetTickCount(); if (pdFALSE == xQueueReceive( *mbox, &(*msg), TickElapsed )) { *msg = NULL; /* if the function times out, it should return * SYS_ARCH_TIMEOUT. */ return(SYS_ARCH_TIMEOUT); } }/* If the function gets a msg, it should return the number of ms * spent waiting. */ TickStop = xTaskGetTickCount(); /* Take care of wrap-around. */ if (TickStop >= TickStart) { TickElapsed = TickStop - TickStart; } else { TickElapsed = portMAX_DELAY - TickStart + TickStop; }return(TickElapsed * portTICK_RATE_MS); } else { return (u32_t)ERR_MEM; } }/** * \brief This is similar to sys_arch_mbox_fetch, however if a message is not * present in the mailbox, it immediately returns with the code SYS_MBOX_EMPTY. * On success 0 is returned. * * \param mbox Pointer to the mailbox. * \param msg A result parameter that is set by the function (i.e., by doing * "*msg = ptr"). The "msg" parameter maybe NULL to indicate that the message * should be dropped. * * \return Number of milliseconds spent waiting or SYS_ARCH_TIMEOUT if there was * a timeout. Or ERR_MEM if invalid pointer to message box. */ u32_t sys_arch_mbox_tryfetch(sys_mbox_t *mbox, void **msg) { void *tempoptr; /* Sanity check */ if (mbox != NULL) { if (msg == NULL) { msg = &tempoptr; }if (pdFALSE == xQueueReceive( *mbox, &(*msg), 0 )) { /* if a message is not present in the mailbox, it * immediately returns with */ /* the code SYS_MBOX_EMPTY. */ return(SYS_MBOX_EMPTY); }/* On success 0 is returned. */ return(0); } else { return(SYS_MBOX_EMPTY); } }#ifndef sys_mbox_valid /** * \brief Check if an mbox is valid/allocated. * * \param mbox Pointer to the mailbox. * * \return Mailbox for valid, 0 for invalid. */ int sys_mbox_valid(sys_mbox_t *mbox) { return ((int)(*mbox)); } #endif#ifndef sys_mbox_set_invalid /** * \brief Set an mbox invalid. * * \param mbox Pointer to the mailbox. */ void sys_mbox_set_invalid(sys_mbox_t *mbox) { *mbox = NULL; }#endif /** * \brief Instantiate a thread for lwIP. Both the id and the priority are * system dependent. * * \param name Pointer to the thread name. * \param thread Thread function. * \param arg Argument will be passed into the thread(). * \param stacksize Stack size of the thread. * \param prio Thread priority. * * \return The id of the new thread. */ sys_thread_t sys_thread_new(const char *name, lwip_thread_fn thread, void *arg, int stacksize, int prio) { sys_thread_t newthread; portBASE_TYPE result; SYS_ARCH_DECL_PROTECT(protectionLevel); result = xTaskCreate( thread, (const portCHAR *)name, stacksize, arg, prio, &newthread ); /* Need to protect this -- preemption here could be a problem! */ SYS_ARCH_PROTECT(protectionLevel); if (pdPASS == result) { /* For each task created, store the task handle (pid) in the * timers array. */ /* This scheme doesn't allow for threads to be deleted */ Threads_TimeoutsList[NbActiveThreads++].pid = newthread; } else { newthread = NULL; } SYS_ARCH_UNPROTECT(protectionLevel); return(newthread); }/* Mutex functions: *//** Define LWIP_COMPAT_MUTEX if the port has no mutexes and binary semaphores *should be used instead */ #if !LWIP_COMPAT_MUTEX/** * \brief Create a new mutex. * * \param mutex Pointer to the mutex to create. * * \return A new mutex. */ err_t sys_mutex_new(sys_mutex_t *mutex) { }/** * \brief Lock a mutex. * * \param mutex the mutex to lock. */ void sys_mutex_lock(sys_mutex_t *mutex) { }/** * \brief Unlock a mutex. * * \param mutex the mutex to unlock. */ void sys_mutex_unlock(sys_mutex_t *mutex) { }/** * \brief Delete a semaphore. * * \param mutex the mutex to delete. */ void sys_mutex_free(sys_mutex_t *mutex) { }#ifndef sys_mutex_valid /** * \brief Check if a mutex is valid/allocated. * * \param mutex Pointer to the mutex. * * \return Valid mutex number or 0 for invalid. */ int sys_mutex_valid(sys_mutex_t *mutex) { return ((int)(*mutex)); }#endif#ifndef sys_mutex_set_invalid /** * \brief Set a mutex invalid so that sys_mutex_valid returns 0. * * \param mutex Pointer to the mutex. */ void sys_mutex_set_invalid(sys_mutex_t *mutex) { *mutex = NULL; }#endif #endif/* This optional function does a "fast" critical region protection and returns * the previous protection level. This function is only called during very short * critical regions. An embedded system which supports ISR-based drivers might * want to implement this function by disabling interrupts. Task-based systems * might want to implement this by using a mutex or disabling tasking. This * function should support recursive calls from the same task or interrupt. In * other words, sys_arch_protect() could be called while already protected. In * that case the return value indicates that it is already protected.*/ extern volatile unsigned portLONG ulCriticalNesting; /** * \brief Protect the system. * * \return 1 on success. */ sys_prot_t sys_arch_protect(void) { vPortEnterCritical(); return 1; /* Not used */ }/** * \brief Unprotect the system. * * \param pval Protect value. */ void sys_arch_unprotect(sys_prot_t pval) { vPortExitCritical(); }/** * \brief updata the system time. * * \param null. */ extern u32_t LWipTime; u32_t sys_now(void) { return LWipTime; }

ethernetif.c
#include "lwip/opt.h" #include "lwip/def.h" #include "lwip/mem.h" #include "lwip/pbuf.h" #include #include #include "netif/etharp.h" #include "netif/ppp_oe.h" #include "stm32_eth.h" #include "Task_LwIP.h" #include #include "lwip/sys.h" #include "lwip/timers.h"//网卡的名字 #define IFNAME0 'e' #define IFNAME1 'n'#defineETH_DMARxDesc_FrameLengthShift16//DMA接收描述符,RDES0软件寄存器中描述帧长度的位的偏移值 #defineETH_ERROR((u32)0)//出错代码 #defineETH_SUCCESS((u32)1)//无错代码#define ETH_RXBUFNB(5+3)//接收缓冲器数量 #define ETH_TXBUFNB(5-3)//发送缓冲器数量/************************ FreeRTOS使用宏配置 ****************************/ #define netifINTERFACE_TASK_STACK_SIZE( 350 ) #define netifGUARD_BLOCK_TIME( 250 ) #define netifINTERFACE_TASK_PRIORITY( configMAX_PRIORITIES - 1 ) static struct netif *s_pxNetIf = NULL; xSemaphoreHandle s_xSemaphore = NULL; #define emacBLOCK_TIME_WAITING_FOR_INPUT portMAX_DELAY//( ( portTickType ) 100 ) static void arp_timer(void *arg); /************************ 分隔符 ****************************/ extern u8_t MACaddr[6]; //MAC地址,具有唯一性 extern ETH_DMADESCTypeDef*DMATxDescToSet; //当前DMA发送描述符指针,在以太网库文件中定义的 extern ETH_DMADESCTypeDef*DMARxDescToGet; //当前DMA接收描述符指针,在以太网库文件中定义的ETH_DMADESCTypeDefDMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB]; //发送和接收DMA描述符数组 uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE], Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE]; //发送和接收缓冲区//数据帧结构体,和我们使用的网卡相关 typedef struct{ u32_t length; //帧长度 u32_t buffer; //缓冲区 ETH_DMADESCTypeDef *descriptor; //指向DMA描述符的指针 }FrameTypeDef; //前置的函数声明 FrameTypeDef ETH_RxPkt_ChainMode(void); //网卡接收数据 u32_t ETH_GetCurrentTxBuffer(void); //获取当前DMA发送描述符下数据缓冲区指针 u32_t ETH_TxPkt_ChainMode(u16 FrameLength); //网卡发送数据//接收数据函数 //看一看简单的框架和DMA描述符的结构 //整理思路如下 //当网卡接收到数据,会存放在接收缓冲区,接收DMA描述符下有指向其的指针 //我们还要实现一个网卡接收数据的函数ETH_TxPkt_ChainMode,同发送一样ST提供了例程 //得到缓冲区的数据后,我们要将其拷贝到pbuf结构中,供LWip使用 //所以我们最后将数据拷贝到pbuf后,将它作为函数返回值,返回 static struct pbuf * low_level_input(struct netif *netif) { struct pbuf *p, *q; //p要返回的数据,q拷贝数据时用于暂存数据 u16_t len; //保存接收到数据帧的长度 int l =0; //长度,for时暂存中间值 FrameTypeDef frame; //接受侦 u8 *buffer; //接收到数据的地址p = NULL; //p向指向空,待用 frame = ETH_RxPkt_ChainMode(); //接收数据帧len = frame.length; //将数据帧长度存放在len内待用buffer = (u8 *)frame.buffer; //得到数据区地址p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL); //内存池分配空间if (p != NULL)//分配成功 { for (q = p; q != NULL; q = q->next)//利用for循环拷贝数据 { memcpy((u8_t*)q->payload, (u8_t*)&buffer[l], q->len); l = l + q->len; } }frame.descriptor->Status = ETH_DMARxDesc_OWN; //设置DMA占用描述符 if ((ETH->DMASR & ETH_DMASR_RBUS) != (u32)RESET)//通过判断ETH->DMASR寄存器位7,判断接收缓冲区可不可用 { //接收缓冲区不可用,if成立 ETH->DMASR = ETH_DMASR_RBUS; //清除接收缓冲区不可用标志 ETH->DMARPDR = 0; //通过写ETH->DMARPDR寄存器,恢复DMA接收 }return p; //返回数据 } /** * This function is the ethernetif_input task, it is processed when a packet * is ready to be read from the interface. It uses the function low_level_input() * that should handle the actual reception of bytes from the network * interface. Then the type of the received packet is determined and * the appropriate input function is called. * * @param netif the lwip network interface structure for this ethernetif */ void ethernetif_input( void * pvParameters ) { struct pbuf *p; for( ; ; ) { if (xSemaphoreTake( s_xSemaphore, emacBLOCK_TIME_WAITING_FOR_INPUT)==pdTRUE) { p = low_level_input( s_pxNetIf ); //调用LWip源码处理数据 if (ERR_OK != s_pxNetIf->input( p, s_pxNetIf)) {//如果处理失败,释放掉pbuf空间 pbuf_free(p); p=NULL; } } } } //初始化函数 static void low_level_init(struct netif *netif) { struct ethernetif *ethernetif = netif->state; uint8_t i; netif->hwaddr_len = ETHARP_HWADDR_LEN; //设置MAC地址长度netif->hwaddr[0] = lwipdev.mac[0]; //设置MAC地址,6位,地址唯一,不能重复 netif->hwaddr[1] = lwipdev.mac[1]; netif->hwaddr[2] = lwipdev.mac[2]; netif->hwaddr[3] = lwipdev.mac[3]; netif->hwaddr[4] = lwipdev.mac[4]; netif->hwaddr[5] = lwipdev.mac[5]; netif->mtu = 1500; //最大传输单元//设置网卡功能 //NETIF_FLAG_BROADCAST允许广播 //NETIF_FLAG_ETHARP开启ARP功能 //NETIF_FLAG_LINK_UP设置后接口产生一个活跃的链接,要开启硬件校验 netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_LINK_UP; s_pxNetIf =netif; //创建信号量 if (s_xSemaphore == NULL) { s_xSemaphore= xSemaphoreCreateCounting(20,0); }//接下来我们要初始化发送和接收DMA描述符链表 //107VCT6采用链式结构 //我们要先创建DMA描述符数组 //DMA描述符内包含了一个指向接收和发送缓冲区的指针,我们还要创建接收和发送缓冲区,两个数组 ETH_DMATxDescChainInit(DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB); //初始化发送DMA描述符链表 ETH_DMARxDescChainInit(DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB); //初始化接收DMA描述符链表 //开启DMA描述符接收中断 for(i=0; inext) { memcpy((u8_t*)&buffer[l], q->payload, q->len); l = l + q->len; } ETH_TxPkt_ChainMode(l); xSemaphoreGive(xTxSemaphore); }return ERR_OK; } /***************************************************/ /***************************************************/ /***************************************************/ static void arp_timer(void *arg) { etharp_tmr(); sys_timeout(ARP_TMR_INTERVAL, arp_timer, NULL); } /************************************************************* * */ err_t ethernetif_init(struct netif *netif) { LWIP_ASSERT("netif != NULL", (netif != NULL)); #if LWIP_NETIF_HOSTNAME netif->hostname = "lwip"; //命名 #endif //初始化netif相关字段 netif->name[0] = IFNAME0; netif->name[1] = IFNAME1; netif->output = etharp_output; netif->linkoutput = low_level_output; low_level_init(netif); etharp_init(); sys_timeout(ARP_TMR_INTERVAL, arp_timer, NULL); return ERR_OK; }//网卡接收数据函数 FrameTypeDef ETH_RxPkt_ChainMode(void) { u32 framelength = 0; //变量待用 FrameTypeDef frame = {0,0}; //帧结构待用if((DMARxDescToGet->Status & ETH_DMARxDesc_OWN) != (u32)RESET)//如果DMA占用描述符成立 { frame.length = ETH_ERROR; //存放错误代码if ((ETH->DMASR & ETH_DMASR_RBUS) != (u32)RESET)//如果发送缓存不可用,if成立 { ETH->DMASR = ETH_DMASR_RBUS; //清除接收缓冲区不可用标志 ETH->DMARPDR = 0; //通过写ETH->DMARPDR寄存器,恢复DMA接收 } return frame; //返回帧结构 } //如果上步if不成立,标志描述符由CPU占用 //又要进行3个判断 //ETH_DMARxDesc_ES判断接收中是否出错,成立表示没有错误发生 //ETH_DMARxDesc_LS判断是否到了最后一个缓冲区 //ETH_DMARxDesc_FS判断是否包含了帧的第一个缓冲区 if(((DMARxDescToGet->Status & ETH_DMARxDesc_ES) == (u32)RESET) && ((DMARxDescToGet->Status & ETH_DMARxDesc_LS) != (u32)RESET) && ((DMARxDescToGet->Status & ETH_DMARxDesc_FS) != (u32)RESET)) { //都成立的话,得到帧长度值, //DMA接收描述符RDES0软件寄存器位16-位29存放帧长度值 //右移16位,然后还要减去4个自己的CRC校验 framelength = ((DMARxDescToGet->Status & ETH_DMARxDesc_FL) >> ETH_DMARxDesc_FrameLengthShift) - 4; frame.buffer = DMARxDescToGet->Buffer1Addr; //得到接收描述符下Buffer1Addr地址,它指向了数据缓冲区 } else//如果上步if不成立 { framelength = ETH_ERROR; //记录错误代码 }frame.length = framelength; //将帧长度值,记录在frame结构体中的length成员frame.descriptor = DMARxDescToGet; //frame结构体中的descriptor成员指向当前的DMA接收描述符DMARxDescToGet = (ETH_DMADESCTypeDef*) (DMARxDescToGet->Buffer2NextDescAddr); //将当前接收DMA描述符指针,指向下一个接收DMA链表中的DMA描述符return (frame); //返回帧结构 }//网卡发送数据函数 u32_t ETH_TxPkt_ChainMode(u16 FrameLength) { if((DMATxDescToSet->Status & ETH_DMATxDesc_OWN) != (u32)RESET)//如果DMA占用描述符成立 { return ETH_ERROR; //返回错误代码 }//如果if不成立,表示CPU占用描述符 DMATxDescToSet->ControlBufferSize = (FrameLength & ETH_DMATxDesc_TBS1); //设置发送帧长度DMATxDescToSet->Status |= ETH_DMATxDesc_LS | ETH_DMATxDesc_FS; //ETH_DMATxDesc_LS和ETH_DMATxDesc_FS置1,表示帧中存放了,第一个和最后一个分块DMATxDescToSet->Status |= ETH_DMATxDesc_OWN; //把描述符给DMA使用if ((ETH->DMASR & ETH_DMASR_TBUS) != (u32)RESET)//如果发送缓存不可用,if成立 { ETH->DMASR = ETH_DMASR_TBUS; //清除发送缓存不可用标志 ETH->DMATPDR = 0; //写ETH->DMATPDR寄存器,以求回复发送流程 }DMATxDescToSet = (ETH_DMADESCTypeDef*) (DMATxDescToSet->Buffer2NextDescAddr); //将当前发送DMA描述符指针,指向下一个发送DMA链表中的DMA描述符return ETH_SUCCESS; //返回成功代码 }//获取发送DMA描述符下的缓冲区 u32_t ETH_GetCurrentTxBuffer(void) { return (DMATxDescToSet->Buffer1Addr); //得到DMA描述符内Buffer1Addr地址。 }

修改lwipopts.h文件
#ifndef __LWIPOPTS_H__ #define __LWIPOPTS_H__#define SYS_LIGHTWEIGHT_PROT0 //关保护//NO_SYS==1:不使用操作系统 #define NO_SYS0//1:不使用UCOS操作系统 0:使用操作系统#ifndef CHECKSUM_GEN_ICMP #define CHECKSUM_GEN_ICMP0//我们使用硬件校验,关闭软件校验 #endif//使用4字节对齐模式 #define MEM_ALIGNMENT4//MEM_SIZE:heap内存的大小,如果在应用中有大量数据发送的话这个值最好设置大一点 #define MEM_SIZE(5*1024)//16000 //内存堆大小//MEMP_NUM_PBUF:memp结构的pbuf数量,如果应用从ROM或者静态存储区发送大量数据时,这个值应该设置大一点 #define MEMP_NUM_PBUF10//MEMP_NUM_UDP_PCB:UDP协议控制块(PCB)数量.每个活动的UDP"连接"需要一个PCB. #define MEMP_NUM_UDP_PCB6//MEMP_NUM_TCP_PCB:同时建立激活的TCP数量 #define MEMP_NUM_TCP_PCB10//MEMP_NUM_TCP_PCB_LISTEN:能够监听的TCP连接数量 #define MEMP_NUM_TCP_PCB_LISTEN 6//MEMP_NUM_TCP_SEG:最多同时在队列中的TCP段数量 #define MEMP_NUM_TCP_SEG15//MEMP_NUM_SYS_TIMEOUT:能够同时激活的timeout个数 #define MEMP_NUM_SYS_TIMEOUT8/* ---------- Pbuf选项---------- */ //PBUF_POOL_SIZE:pbuf内存池个数. #define PBUF_POOL_SIZE20//PBUF_POOL_BUFSIZE:每个pbuf内存池大小. #define PBUF_POOL_BUFSIZE512/* ---------- TCP选项---------- */ #define LWIP_TCP1//为1是使用TCP #define TCP_TTL255//生存时间/*当TCP的数据段超出队列时的控制位,当设备的内存过小的时候此项应为0*/ #define TCP_QUEUE_OOSEQ0//最大TCP分段 #define TCP_MSS(1500 - 40)//TCP_MSS = (MTU - IP报头大小 - TCP报头大小//TCP发送缓冲区大小(bytes). #define TCP_SND_BUF(4*TCP_MSS)//TCP_SND_QUEUELEN: TCP发送缓冲区大小(pbuf).这个值最小为(2 * TCP_SND_BUF/TCP_MSS) #define TCP_SND_QUEUELEN(2* TCP_SND_BUF/TCP_MSS)//TCP发送窗口 #define TCP_WND(2*TCP_MSS)/* ---------- ICMP选项---------- */ #define LWIP_ICMP1 //使用ICMP协议/* ---------- DHCP选项---------- */ //当使用DHCP时此位应该为1,LwIP 0.5.1版本中没有DHCP服务. #define LWIP_DHCP1/* ---------- UDP选项 ---------- */ #define LWIP_UDP1 //使用UDP服务 #define UDP_TTL255 //UDP数据包生存时间/* ---------- Statistics options ---------- */ #define LWIP_STATS 0 #define LWIP_PROVIDE_ERRNO 1//STM32F4x7允许通过硬件识别和计算IP,UDP和ICMP的帧校验和 #define CHECKSUM_BY_HARDWARE //定义CHECKSUM_BY_HARDWARE,使用硬件帧校验#ifdef CHECKSUM_BY_HARDWARE //CHECKSUM_GEN_IP==0: 硬件生成IP数据包的帧校验和 #define CHECKSUM_GEN_IP0 //CHECKSUM_GEN_UDP==0: 硬件生成UDP数据包的帧校验和 #define CHECKSUM_GEN_UDP0 //CHECKSUM_GEN_TCP==0: 硬件生成TCP数据包的帧校验和 #define CHECKSUM_GEN_TCP0 //CHECKSUM_CHECK_IP==0: 硬件检查输入的IP数据包帧校验和 #define CHECKSUM_CHECK_IP0 //CHECKSUM_CHECK_UDP==0: 硬件检查输入的UDP数据包帧校验和 #define CHECKSUM_CHECK_UDP0 //CHECKSUM_CHECK_TCP==0: 硬件检查输入的TCP数据包帧校验和 #define CHECKSUM_CHECK_TCP0 #else //CHECKSUM_GEN_IP==1: 软件生成IP数据包帧校验和 #define CHECKSUM_GEN_IP1 // CHECKSUM_GEN_UDP==1: 软件生成UDOP数据包帧校验和 #define CHECKSUM_GEN_UDP1 //CHECKSUM_GEN_TCP==1: 软件生成TCP数据包帧校验和 #define CHECKSUM_GEN_TCP1 // CHECKSUM_CHECK_IP==1: 软件检查输入的IP数据包帧校验和 #define CHECKSUM_CHECK_IP1 // CHECKSUM_CHECK_UDP==1: 软件检查输入的UDP数据包帧校验和 #define CHECKSUM_CHECK_UDP1 //CHECKSUM_CHECK_TCP==1: 软件检查输入的TCP数据包帧校验和 #define CHECKSUM_CHECK_TCP1 #endif/* --------------------------------- ---------- OS options ---------- --------------------------------- */#define TCPIP_THREAD_STACKSIZE1000 #define TCPIP_MBOX_SIZE5 #define DEFAULT_UDP_RECVMBOX_SIZE2000 #define DEFAULT_TCP_RECVMBOX_SIZE2000 #define DEFAULT_ACCEPTMBOX_SIZE2000 #define DEFAULT_THREAD_STACKSIZE500 #define TCPIP_THREAD_PRIO(configMAX_PRIORITIES - 2)/* ---------------------------------------------- ---------- SequentialAPI选项---------- ---------------------------------------------- *///LWIP_NETCONN==1:使能NETCON函数(要求使用api_lib.c) #define LWIP_NETCONN1/* ------------------------------------ ---------- Socket API选项---------- ------------------------------------ */ //LWIP_SOCKET==1:使能Socket API(要求使用sockets.c) #define LWIP_SOCKET1#define LWIP_COMPAT_MUTEX1#define LWIP_SO_RCVTIMEO1 //通过定义LWIP_SO_RCVTIMEO使能netconn结构体中recv_timeout,使用recv_timeout可以避免阻塞线程/* ---------------------------------------- ---------- Lwip调试选项---------- ---------------------------------------- */ //#define LWIP_DEBUG1 //开启DEBUG选项//#define ICMP_DEBUG1//开启/关闭ICMPdebug#if 0 #define U8_F "c" #define S8_F "c" #define X8_F "x" #define U16_F "u" #define S16_F "d" #define X16_F "x" #define U32_F "u" #define S32_F "d" #define X32_F "x" //extern void u2_printf(const char *pcString, ...); extern void UARTprintf(const char *pcString, ...); //#define LWIP_PLATFORM_DIAG(x) {u2_printf x; } //#define LWIP_DEBUG#define LWIP_DBG_MIN_LEVELLWIP_DBG_LEVEL_OFF //#define LWIP_DBG_MIN_LEVELLWIP_DBG_LEVEL_WARNING //#define LWIP_DBG_MIN_LEVELLWIP_DBG_LEVEL_SERIOUS //#define LWIP_DBG_MIN_LEVELLWIP_DBG_LEVEL_SEVERE//#define LWIP_DBG_TYPES_ONLWIP_DBG_ON //#define LWIP_DBG_TYPES_ON(LWIP_DBG_ON|LWIP_DBG_TRACE|LWIP_DBG_STATE|LWIP_DBG_FRESH)//#define ETHARP_DEBUGLWIP_DBG_ON //#define NETIF_DEBUGLWIP_DBG_ON //#define PBUF_DEBUGLWIP_DBG_ON //#define API_LIB_DEBUGLWIP_DBG_ON //#define API_MSG_DEBUGLWIP_DBG_ON //#define SOCKETS_DEBUGLWIP_DBG_ON //#define ICMP_DEBUGLWIP_DBG_ON //#define IGMP_DEBUGLWIP_DBG_ON //#define INET_DEBUGLWIP_DBG_ON #define IP_DEBUGLWIP_DBG_ON //#define IP_REASS_DEBUGLWIP_DBG_ON //#define RAW_DEBUGLWIP_DBG_ON //#define MEM_DEBUGLWIP_DBG_ON //#define MEMP_DEBUGLWIP_DBG_ON //#define SYS_DEBUGLWIP_DBG_ON #define TCP_DEBUGLWIP_DBG_ON //#define TCP_INPUT_DEBUGLWIP_DBG_ON //#define TCP_FR_DEBUGLWIP_DBG_ON //#define TCP_RTO_DEBUGLWIP_DBG_ON //#define TCP_CWND_DEBUGLWIP_DBG_ON //#define TCP_WND_DEBUGLWIP_DBG_ON #define TCP_OUTPUT_DEBUGLWIP_DBG_ON //#define TCP_RST_DEBUGLWIP_DBG_ON //#define TCP_QLEN_DEBUGLWIP_DBG_ON //#define UDP_DEBUGLWIP_DBG_ON //#define TCPIP_DEBUGLWIP_DBG_ON //#define PPP_DEBUGLWIP_DBG_ON //#define SLIP_DEBUGLWIP_DBG_ON //#define DHCP_DEBUGLWIP_DBG_ON //#define AUTOIP_DEBUGLWIP_DBG_ON //#define SNMP_MSG_DEBUGLWIP_DBG_ON //#define SNMP_MIB_DEBUGLWIP_DBG_ON //#define DNS_DEBUGLWIP_DBG_ON #endif#endif /* __LWIPOPTS_H__ */

主要的几个文件我罗列一下,不然太长了,还有为毛win10的edge支持的这么差,还要找个游览器才能写.
STM32F107+LWIP+FreeRTOS
文章图片

上一下效果图
STM32F107+LWIP+FreeRTOS
文章图片

    推荐阅读