dyld简介及加载过程分析

dyld dyld(the dynamic link editor)是苹果的动态链接器,是苹果操作系统一个重要组成部分,在系统内核做好程序准备工作之后,交由dyld负责余下的工作。
dyld加载过程分析 我们都知道程序的入口是main()函数,因此我们在程序的main()函数中打断点:

dyld简介及加载过程分析
文章图片
E3E3C4FF4307E91CFA80F87BA6985AC4.png
结果发现只有一个start函数,通过lldb指令(bt,up)查看,也只能知道与libdyld.dylib有关,但具体的啥也没有。
于是我们尝试在类的load()方法中打断点:
dyld简介及加载过程分析
文章图片
3473E87FCEE51D3F41626599771896EC.png
看到有一系列函数调用栈,点击第一个函数_dyld_start:
dyld简介及加载过程分析
文章图片
5B256739113A7E6250E138B284B56016.png
查看汇编,发现是由dyldbootstrap::start(macho_header const , int, char const , long, macho_header const, unsigned long*)方法开始的。我们从该方法进行dyld的源码分析。
dyld简介及加载过程分析
文章图片
15E41F06FEA6BB6D610F32A02EBE2D69.png
从源码中看到,dyldbootstrap::start主要做了根据滑块算出偏移地址(ASLR),rebase dyld,消息初始化,栈溢出保护, 最后调用了_main函数,整个app启动的关键函数就是这个_main()函数。

if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) { launchTraceID = dyld3::kdebug_trace_dyld_duration_start(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, (uint64_t)mainExecutableMH, 0, 0); }// Grab the cdHash of the main executable from the environment //1.配置相关环境操作 uint8_t mainExecutableCDHashBuffer[20]; const uint8_t* mainExecutableCDHash = nullptr; //主程序的哈希 if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) ) mainExecutableCDHash = mainExecutableCDHashBuffer; // Trace dyld's load notifyKernelAboutImage((macho_header*)&__dso_handle, _simple_getenv(apple, "dyld_file")); #if !TARGET_IPHONE_SIMULATOR // Trace the main executable's load notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file")); #endifuintptr_t result = 0; sMainExecutableMachHeader = mainExecutableMH; //主程序MarchO的头 sMainExecutableSlide = mainExecutableSlide; //拿到主程序的slider,用于做重定向 #if __MAC_OS_X_VERSION_MIN_REQUIRED // if this is host dyld, check to see if iOS simulator is being run const char* rootPath = _simple_getenv(envp, "DYLD_ROOT_PATH"); if ( (rootPath != NULL) ) { // look to see if simulator has its own dyld char simDyldPath[PATH_MAX]; strlcpy(simDyldPath, rootPath, PATH_MAX); strlcat(simDyldPath, "/usr/lib/dyld_sim", PATH_MAX); int fd = my_open(simDyldPath, O_RDONLY, 0); if ( fd != -1 ) { const char* errMessage = useSimulatorDyld(fd, mainExecutableMH, simDyldPath, argc, argv, envp, apple, startGlue, &result); if ( errMessage != NULL ) halt(errMessage); return result; } } #endifCRSetCrashLogMessage("dyld: launch started"); setContext(mainExecutableMH, argc, argv, envp, apple); //设置上下文(函数的参数,标识信息)// Pickup the pointer to the exec path. sExecPath = _simple_getenv(apple, "executable_path"); // Remove interim apple[0] transition code from dyld if (!sExecPath) sExecPath = apple[0]; if ( sExecPath[0] != '/' ) { // have relative path, use cwd to make absolute char cwdbuff[MAXPATHLEN]; if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) { // maybe use static buffer to avoid calling malloc so early... char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2]; strcpy(s, cwdbuff); strcat(s, "/"); strcat(s, sExecPath); sExecPath = s; } }// Remember short name of process for later logging sExecShortName = ::strrchr(sExecPath, '/'); if ( sExecShortName != NULL ) ++sExecShortName; else sExecShortName = sExecPath; configureProcessRestrictions(mainExecutableMH); //配置进程相关信息,进程是否受限#if __MAC_OS_X_VERSION_MIN_REQUIRED if ( !gLinkContext.allowEnvVarsPrint && !gLinkContext.allowEnvVarsPath && !gLinkContext.allowEnvVarsSharedCache ) { pruneEnvironmentVariables(envp, &apple); // set again because envp and apple may have changed or moved setContext(mainExecutableMH, argc, argv, envp, apple); } else #endif { checkEnvironmentVariables(envp); //检测环境变量 defaultUninitializedFallbackPaths(envp); } #if __MAC_OS_X_VERSION_MIN_REQUIRED if (((dyld3::MachOFile*)mainExecutableMH)->supportsPlatform(dyld3::Platform::iOSMac) && !((dyld3::MachOFile*)mainExecutableMH)->supportsPlatform(dyld3::Platform::macOS)) { gLinkContext.rootPaths = parseColonList("/System/iOSSupport", NULL); gLinkContext.marzipan = true; if ( sEnv.DYLD_FALLBACK_LIBRARY_PATH == sLibraryFallbackPaths ) sEnv.DYLD_FALLBACK_LIBRARY_PATH = sRestrictedLibraryFallbackPaths; if ( sEnv.DYLD_FALLBACK_FRAMEWORK_PATH == sFrameworkFallbackPaths ) sEnv.DYLD_FALLBACK_FRAMEWORK_PATH = sRestrictedFrameworkFallbackPaths; } #endif if ( sEnv.DYLD_PRINT_OPTS ) printOptions(argv); if ( sEnv.DYLD_PRINT_ENV ) printEnvironmentVariables(envp); getHostInfo(mainExecutableMH, mainExecutableSlide); //获取相关程序架构,到这里整个环境配置完成。

源码中分析得,_main函数开始主要是配置相关环境, 包括对主程序哈希,保存主程序MarchO的头,保存主slider(用于做重定向),设置上下文,配置进程相关信息(进程是否受限),检测环境变量,获取相关程序架构。
这里补充一下:
if ( sEnv.DYLD_PRINT_OPTS ) printOptions(argv); if ( sEnv.DYLD_PRINT_ENV ) printEnvironmentVariables(envp);

DYLD_PRINT_OPTS以及DYLD_PRINT_ENV编译的环境变量是可以在Xcode中配置的。

dyld简介及加载过程分析
文章图片
FECB5322211D3F3EC686F33D44CE905C.png
配置后,在程序的启动过程中会输出启动的相关信息:

dyld简介及加载过程分析
文章图片
1758CA317463883F5E9F8156B056AE27.png
_main函数中配置完环境变量后,接下来开始加载共享缓存库。
// load shared cache checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);

调用函数检查共享缓存是否被禁用,进入checkSharedRegionDisable函数,
static void checkSharedRegionDisable(const dyld3::MachOLoaded* mainExecutableMH, uintptr_t mainExecutableSlide) { #if __MAC_OS_X_VERSION_MIN_REQUIRED // if main executable has segments that overlap the shared region, // then disable using the shared region if ( mainExecutableMH->intersectsRange(SHARED_REGION_BASE, SHARED_REGION_SIZE) ) { gLinkContext.sharedRegionMode = ImageLoader::kDontUseSharedRegion; if ( gLinkContext.verboseMapping ) dyld::warn("disabling shared region because main executable overlaps\n"); } #if __i386__ if ( !gLinkContext.allowEnvVarsPath ) { // use private or no shared region for suid processes gLinkContext.sharedRegionMode = ImageLoader::kUsePrivateSharedRegion; } #endif #endif // iOS cannot run without shared region }

iOS必须开启共享缓存库才能运行。
检查共享缓存库开启后,开始调用mapSharedCache()函数加载共享缓存库,mapSharedCache()函数中又调用loadDyldCache()函数,
bool loadDyldCache(const SharedCacheOptions& options, SharedCacheLoadInfo* results) { results->loadAddress= 0; results->slide= 0; results->errorMessage= nullptr; #if TARGET_IPHONE_SIMULATOR // simulator only supports mmap()ing cache privately into process return mapCachePrivate(options, results); #else if ( options.forcePrivate ) { // mmap cache into this process only return mapCachePrivate(options, results); } else { // fast path: when cache is already mapped into shared region bool hasError = false; if ( reuseExistingCache(options, results) ) { hasError = (results->errorMessage != nullptr); } else { // slow path: this is first process to load cache hasError = mapCacheSystemWide(options, results); } return hasError; } #endif }

loadDyldCache()函数中,有三种情况,第一种仅加载到当前进程,第二种是已经加载过了,不需要做任何处理,第三种是第一次加载,调用mapCacheSystemWide加载。
加载完共享缓存库之后,接下来开始加载主程序mach-O。
sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);

_main函数中调用instantiateFromLoadedImage函数加载Match-O,进入instantiateFromLoadedImage函数,
static ImageLoaderMachO* instantiateFromLoadedImage(const macho_header* mh, uintptr_t slide, const char* path) { // try mach-o loader if ( isCompatibleMachO((const uint8_t*)mh, path) ) { ImageLoader* image = ImageLoaderMachO::instantiateMainExecutable(mh, slide, path, gLinkContext); addImage(image); return (ImageLoaderMachO*)image; }throw "main executable not a known format"; }

在instantiateFromLoadedImage调用isCompatibleMachO函数检测march-o的hader,然后调用ImageLoaderMachO::instantiateMainExecutable函数,进入ImageLoaderMachO::instantiateMainExecutable
// create image for main executable ImageLoader* ImageLoaderMachO::instantiateMainExecutable(const macho_header* mh, uintptr_t slide, const char* path, const LinkContext& context) { //dyld::log("ImageLoader=%ld, ImageLoaderMachO=%ld, ImageLoaderMachOClassic=%ld, ImageLoaderMachOCompressed=%ld\n", //sizeof(ImageLoader), sizeof(ImageLoaderMachO), sizeof(ImageLoaderMachOClassic), sizeof(ImageLoaderMachOCompressed)); bool compressed; unsigned int segCount; unsigned int libCount; const linkedit_data_command* codeSigCmd; const encryption_info_command* encryptCmd; sniffLoadCommands(mh, path, false, &compressed, &segCount, &libCount, context, &codeSigCmd, &encryptCmd); // instantiate concrete class based on content of load commands if ( compressed ) return ImageLoaderMachOCompressed::instantiateMainExecutable(mh, slide, path, segCount, libCount, context); else #if SUPPORT_CLASSIC_MACHO return ImageLoaderMachOClassic::instantiateMainExecutable(mh, slide, path, segCount, libCount, context); #else throw "missing LC_DYLD_INFO load command"; #endif }

ImageLoaderMachO::instantiateMainExecutable函数中调用sniffLoadCommands为compressed(取值match-O中 dyld_info_only后者dyld_info),
segCount(match-O段的数量,最大不能大于255个),
libCount(match-O依赖库的个数,最大不能大于4095个),
codeSigCmd(代码签名),
encryptCmd(签名信息)
初始化。
ImageLoader是一个抽象类,ImageLoaderMachO::instantiateMainExecutable根据初始化后的值compressed分别调用不同的初始化方法进行初始化。
初始化完成后,返回到instantiateFromLoadedImage函数,调用addImage(image),将主程序添加sAllImages数组中。
static void addImage(ImageLoader* image) { // add to master list allImagesLock(); sAllImages.push_back(image); allImagesUnlock(); // update mapped ranges uintptr_t lastSegStart = 0; uintptr_t lastSegEnd = 0; for(unsigned int i=0, e=image->segmentCount(); i < e; ++i) { if ( image->segUnaccessible(i) ) continue; uintptr_t start = image->segActualLoadAddress(i); uintptr_t end = image->segActualEndAddress(i); if ( start == lastSegEnd ) { // two segments are contiguous, just record combined segments lastSegEnd = end; } else { // non-contiguous segments, record last (if any) if ( lastSegEnd != 0 ) addMappedRange(image, lastSegStart, lastSegEnd); lastSegStart = start; lastSegEnd = end; } } if ( lastSegEnd != 0 ) addMappedRange(image, lastSegStart, lastSegEnd); if ( gLinkContext.verboseLoading || (sEnv.DYLD_PRINT_LIBRARIES_POST_LAUNCH && (sMainExecutable!=NULL) && sMainExecutable->isLinked()) ) { dyld::log("dyld: loaded: %s\n", image->getPath()); } }

这里补充一下,我们经常在lldb调试中输入image list查看所有镜像模块,由于主程序是第一个添加到sAllImages中的,所以image list查看的模块第一个一定是主程序模块。

dyld简介及加载过程分析
文章图片
222.png
主程序加载完毕后,_main中调用根据DYLD_INSERT_LIBRARIES个数循环调用loadInsertedDylib函数,加载插入的动态库(越狱的插件就是修改sEnv.DYLD_INSERT_LIBRARIES值,利用这个步骤在APP中注入插件,这个是苹果预留给自己用的,必须是root的权限的用户才能使用,所以越狱也是获取了root权限):
// load any inserted libraries if( sEnv.DYLD_INSERT_LIBRARIES != NULL ) { for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib) loadInsertedDylib(*lib); } // record count of inserted libraries so that a flat search will look at // inserted libraries, then main, then others. sInsertedDylibCount = sAllImages.size()-1;

在loadInsertedDylib中调用load方法加载插入的动态库,并和主程序一样加入到sAllImages中。
动态库插入完成后,将插入的个数记录在sInsertedDylibCount中。
link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);

然后开始调用link链接主程序,进入link函数中:
void ImageLoader::link(const LinkContext& context, bool forceLazysBound, bool preflightOnly, bool neverUnload, const RPathChain& loaderRPaths, const char* imagePath) { //dyld::log("ImageLoader::link(%s) refCount=%d, neverUnload=%d\n", imagePath, fDlopenReferenceCount, fNeverUnload); // clear error strings (*context.setErrorStrings)(0, NULL, NULL, NULL); uint64_t t0 = mach_absolute_time(); this->recursiveLoadLibraries(context, preflightOnly, loaderRPaths, imagePath); //在链接的时候,不仅仅是对主程序进行链接,还有很多依赖库也需要进行链接,所以首先循环加载依赖库 context.notifyBatch(dyld_image_state_dependents_mapped, preflightOnly); // we only do the loading step for preflights if ( preflightOnly ) return; uint64_t t1 = mach_absolute_time(); context.clearAllDepths(); this->recursiveUpdateDepth(context.imageCount()); //递归依赖层级__block uint64_t t2, t3, t4, t5; { dyld3::ScopedTimer(DBG_DYLD_TIMING_APPLY_FIXUPS, 0, 0, 0); t2 = mach_absolute_time(); this->recursiveRebase(context); //必须对主程序和依赖库做重定位rebase(由于ASLR的存在) context.notifyBatch(dyld_image_state_rebased, false); t3 = mach_absolute_time(); if ( !context.linkingMainExecutable ) //符号绑定 this->recursiveBindWithAccounting(context, forceLazysBound, neverUnload); t4 = mach_absolute_time(); if ( !context.linkingMainExecutable ) this->weakBind(context); //弱绑定 t5 = mach_absolute_time(); }if ( !context.linkingMainExecutable ) context.notifyBatch(dyld_image_state_bound, false); uint64_t t6 = mach_absolute_time(); std::vector dofs; this->recursiveGetDOFSections(context, dofs); //注册GOF context.registerDOFs(dofs); //注册GOF uint64_t t7 = mach_absolute_time(); // interpose any dynamically loaded images if ( !context.linkingMainExecutable && (fgInterposingTuples.size() != 0) ) { dyld3::ScopedTimer timer(DBG_DYLD_TIMING_APPLY_INTERPOSING, 0, 0, 0); this->recursiveApplyInterposing(context); }// clear error strings (*context.setErrorStrings)(0, NULL, NULL, NULL); fgTotalLoadLibrariesTime += t1 - t0; fgTotalRebaseTime += t3 - t2; fgTotalBindTime += t4 - t3; fgTotalWeakBindTime += t5 - t4; fgTotalDOF += t7 - t6; // done with initial dylib loads fgNextPIEDylibAddress = 0; }

link函数主要做了循环加载依赖库,对主程序和依赖库做重定位rebase,符号绑定,弱绑定,注册GOF。
if ( sInsertedDylibCount > 0 ) { for(unsigned int i=0; i < sInsertedDylibCount; ++i) { ImageLoader* image = sAllImages[i+1]; link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1); image->setNeverUnloadRecursive(); } // only INSERTED libraries can interpose // register interposing info after all inserted libraries are bound so chaining works for(unsigned int i=0; i < sInsertedDylibCount; ++i) { ImageLoader* image = sAllImages[i+1]; image->registerInterposing(gLinkContext); } }

链接主程序完成后,判断sInsertedDylibCount插入的动态库数量是否大于0,然后循环调用link进行链接插入的动态库。
以上的所有步骤都是在加载Match-O,从initializeMainExecutable函数开始一步一步调用主程序代码。
// run all initializers initializeMainExecutable();

结合之前的函数调用栈:

dyld简介及加载过程分析
文章图片
E661C0F0590CC360C5AFA1B3CB5D56D6.png
我们知道在initializeMainExecutable中调用了ImageLoader::runInitializers函数,ImageLoader::runInitializers函数调用了ImageLoader::processInitializers,而ImageLoader::processInitializers函数中调用了ImageLoader::recursiveInitialization:函数,ImageLoader::recursiveInitialization:中又调用dyld::notifySingle:这些都可以在源码中找到。
当我们在dyld::notifySingle:中找load_images时,却找不到。
static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo) { //dyld::log("notifySingle(state=%d, image=%s)\n", state, image->getPath()); std::vector* handlers = stateToHandlers(state, sSingleHandlers); if ( handlers != NULL ) { dyld_image_info info; info.imageLoadAddress= image->machHeader(); info.imageFilePath= image->getRealPath(); info.imageFileModDate= image->lastModified(); for (std::vector::iterator it = handlers->begin(); it != handlers->end(); ++it) { const char* result = (*it)(state, 1, &info); if ( (result != NULL) && (state == dyld_image_state_mapped) ) { //fprintf(stderr, "image rejected by handler=%p\n", *it); // make copy of thrown string so that later catch clauses can free it const char* str = strdup(result); throw str; } } } if ( state == dyld_image_state_mapped ) { // Save load addr + UUID for images from outside the shared cache if ( !image->inSharedCache() ) { dyld_uuid_info info; if ( image->getUUID(info.imageUUID) ) { info.imageLoadAddress = image->machHeader(); addNonSharedCacheImageUUID(info); } } } if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) { uint64_t t0 = mach_absolute_time(); dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0); (*sNotifyObjCInit)(image->getRealPath(), image->machHeader()); uint64_t t1 = mach_absolute_time(); uint64_t t2 = mach_absolute_time(); uint64_t timeInObjC = t1-t0; uint64_t emptyTime = (t2-t1)*100; if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) { timingInfo->addTime(image->getShortName(), timeInObjC); } } // mach message csdlc about dynamically unloaded images if ( image->addFuncNotified() && (state == dyld_image_state_terminated) ) { notifyKernel(*image, false); const struct mach_header* loadAddress[] = { image->machHeader() }; const char* loadPath[] = { image->getPath() }; notifyMonitoringDyld(true, 1, loadAddress, loadPath); } }

仔细分析源码,发现了一个函数指针,(*sNotifyObjCInit)(image->getRealPath(), image->machHeader()); 我们猜测,有可能这个函数指针就是load_images函数。
为了验证结果,我们查找一下是哪个地方对sNotifyObjCInit这个函数指针赋值。
void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped) { // record functions to call sNotifyObjCMapped= mapped; sNotifyObjCInit= init; sNotifyObjCUnmapped = unmapped; // call 'mapped' function with all images mapped so far try { notifyBatchPartial(dyld_image_state_bound, true, NULL, false, true); } catch (const char* msg) { // ignore request to abort during registration }// call 'init' function on all images already init'ed (below libSystem) for (std::vector::iterator it=sAllImages.begin(); it != sAllImages.end(); it++) { ImageLoader* image = *it; if ( (image->getState() == dyld_image_state_initialized) && image->notifyObjC() ) { dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0); (*sNotifyObjCInit)(image->getRealPath(), image->machHeader()); } } }

查找到是在registerObjCNotifiers函数为函数sNotifyObjCInit赋值的。
追本溯源,我们继续查找调用registerObjCNotifiers函数的源头,
void _dyld_objc_notify_register(_dyld_objc_notify_mappedmapped, _dyld_objc_notify_initinit, _dyld_objc_notify_unmappedunmapped) { dyld::registerObjCNotifiers(mapped, init, unmapped); }

发现是通过_dyld_objc_notify_register函数调用registerObjCNotifiers的,我们继续查找_dyld_objc_notify_register的调用者,但是在dyld源码中找不到。
这个时候,我们直接在Xcode中下一个_dyld_objc_notify_register函数的符号断点并运行:

dyld简介及加载过程分析
文章图片
3F1F99D7C46B319D120E66DDEA5B1515.png
发现_dyld_objc_notify_register是由_objc_init函数调用的,这个时候我们只能查找objc源码了。
在objc源码中:
void _objc_init(void) { static bool initialized = false; if (initialized) return; initialized = true; // fixme defer initialization until an objc-using image is found? environ_init(); tls_init(); static_init(); lock_init(); exception_init(); _dyld_objc_notify_register(&map_images, load_images, unmap_image); }

我们看到了_dyld_objc_notify_register被调用了,并且函数指针是load_images,所以我们的猜测是正确的。
进入load_images:
load_images(const char *path __unused, const struct mach_header *mh) { // Return without taking locks if there are no +load methods here. if (!hasLoadMethods((const headerType *)mh)) return; recursive_mutex_locker_t lock(loadMethodLock); // Discover load methods { mutex_locker_t lock2(runtimeLock); prepare_load_methods((const headerType *)mh); }// Call +load methods (without runtimeLock - re-entrant) call_load_methods(); }

在load_images中调用了call_load_methods函数,继续进入call_load_methods函数,
**********************************************************************/ void call_load_methods(void) { static bool loading = NO; bool more_categories; loadMethodLock.assertLocked(); // Re-entrant calls do nothing; the outermost call will finish the job. if (loading) return; loading = YES; void *pool = objc_autoreleasePoolPush(); do { // 1. Repeatedly call class +loads until there aren't any more while (loadable_classes_used > 0) { call_class_loads(); }// 2. Call category +loads ONCE more_categories = call_category_loads(); // 3. Run more +loads if there are classes OR more untried categories } while (loadable_classes_used > 0||more_categories); objc_autoreleasePoolPop(pool); loading = NO; }

终于在call_load_methods找到了循环调用我们程序中所有类的Load方法。
// let objc know we are about to initialize this image uint64_t t1 = mach_absolute_time(); fState = dyld_image_state_dependents_initialized; oldState = fState; context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo); // initialize this image bool hasInitializers = this->doInitialization(context);

ImageLoader::recursiveInitialization调用完dyld::notifySingle:后,会继续调用doInitialization函数,进入doInitialization函数
bool ImageLoaderMachO::doInitialization(const LinkContext& context) { CRSetCrashLogMessage2(this->getPath()); // mach-o has -init and static initializers doImageInit(context); doModInitFunctions(context); CRSetCrashLogMessage2(NULL); return (fHasDashInit || fHasInitializers); }

doModInitFunctions作用是加载Match-O特有的函数(C++构造函数等)
下面我们来看一个实例:
当我们建立一个空工程,没有写任何代码,编译后的mach-o如下:

dyld简介及加载过程分析
文章图片
3.png
当我们在main函数中加入如下代码:
#import #import "AppDelegate.h"__attribute__((constructor)) void func1(){ printf("func1来了"); } __attribute__((constructor)) void func2(){ printf("func2来了"); }int main(int argc, char * argv[]) { @autoreleasepool { return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class])); } }

编译后的mach-o如下:

dyld简介及加载过程分析
文章图片
D02BB1977C8C5BEB33C3A9D85E24E31D.png
在MatchO文件DATA段_la_symbol_ptr和_objc_classlist多了_mod_init_func组。doModInitFunctions加载的就是_mod_init_func中数据。
initializeMainExecutable(); 执行完后,dyld开始找主程序的入口函数(MatchO中的LC_MAIN段)
// find entry point for main executable result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();

【dyld简介及加载过程分析】找到后,把结果返回到start中,由start进行调用。

    推荐阅读