用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~

绪论 本期是对腾讯热播剧——雪中悍刀行的一次爬虫与数据分析,耗时一个小时,总爬取条数1W条评论,很适合新人练手,值得注意的一点是评论的情绪文本分析处理,这是第一次接触的知识。
【用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~】用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

爬虫方面:由于腾讯的评论数据是封装在json里面,所以只需要找到json文件,对需要的数据进行提取保存即可。
用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

  • 视频网址:https://v.qq.com/x/cover/mzc0...
  • 评论json数据网址:https://video.coral.qq.com/va...
  • 注:只要替换视频数字id的值,即可爬取其他视频的评论
如何查找视频id? 用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

项目结构: 用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

一. 爬虫部分: 1.爬取评论内容代码:spiders.py
import requests import re import randomdef get_html(url, params): uapools = [ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14' ]thisua = random.choice(uapools) headers = {"User-Agent": thisua} r = requests.get(url, headers=headers, params=params) r.raise_for_status() r.encoding = r.apparent_encoding r.encoding = 'utf-8'# 不加此句出现乱码 return r.textdef parse_page(infolist, data): commentpat = '"content":"(.*?)"' lastpat = '"last":"(.*?)"' commentall = re.compile(commentpat, re.S).findall(data) next_cid = re.compile(lastpat).findall(data)[0] infolist.append(commentall) return next_ciddef print_comment_list(infolist): j = 0 for page in infolist: print('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): print(commentall[i] + '\n') j += 1def save_to_txt(infolist, path): fw = open(path, 'w+', encoding='utf-8') j = 0 for page in infolist: #fw.write('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): fw.write(commentall[i] + '\n') j += 1 fw.close()def main(): infolist = [] vid = '7579013546'; cid = "0"; page_num = 3000 url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2' #print(url)for i in range(page_num): params = {'orinum': '10', 'cursor': cid} html = get_html(url, params) cid = parse_page(infolist, html)print_comment_list(infolist) save_to_txt(infolist, 'content.txt')main()

2.爬取评论时间代码:sp.py
import requests import re import randomdef get_html(url, params): uapools = [ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14' ]thisua = random.choice(uapools) headers = {"User-Agent": thisua} r = requests.get(url, headers=headers, params=params) r.raise_for_status() r.encoding = r.apparent_encoding r.encoding = 'utf-8'# 不加此句出现乱码 return r.textdef parse_page(infolist, data): commentpat = '"time":"(.*?)"' lastpat = '"last":"(.*?)"'commentall = re.compile(commentpat, re.S).findall(data) next_cid = re.compile(lastpat).findall(data)[0]infolist.append(commentall)return next_ciddef print_comment_list(infolist): j = 0 for page in infolist: print('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): print(commentall[i] + '\n') j += 1def save_to_txt(infolist, path): fw = open(path, 'w+', encoding='utf-8') j = 0 for page in infolist: #fw.write('第' + str(j + 1) + '页\n') commentall = page for i in range(0, len(commentall)): fw.write(commentall[i] + '\n') j += 1 fw.close()def main(): infolist = [] vid = '7579013546'; cid = "0"; page_num =3000 url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2' #print(url)for i in range(page_num): params = {'orinum': '10', 'cursor': cid} html = get_html(url, params) cid = parse_page(infolist, html)print_comment_list(infolist) save_to_txt(infolist, 'time.txt')main()

二.数据处理部分 1.评论的时间戳转换为正常时间 time.py
# coding=gbk import csv import timecsvFile = open("data.csv",'w',newline='',encoding='utf-8') writer = csv.writer(csvFile) csvRow = [] #print(csvRow) f = open("time.txt",'r',encoding='utf-8') for line in f: csvRow = int(line) #print(csvRow)timeArray = time.localtime(csvRow) csvRow = time.strftime("%Y-%m-%d %H:%M:%S", timeArray) print(csvRow) csvRow = csvRow.split() writer.writerow(csvRow)f.close() csvFile.close()

2.评论内容读入csvCD.py
# coding=gbk import csv csvFile = open("content.csv",'w',newline='',encoding='utf-8') writer = csv.writer(csvFile) csvRow = []f = open("content.txt",'r',encoding='utf-8') for line in f: csvRow = line.split() writer.writerow(csvRow)f.close() csvFile.close()

3.统计一天各个时间段内的评论数 py.py
# coding=gbk import csvfrom pyecharts import options as opts from sympy.combinatorics import Subset from wordcloud import WordCloudwith open('../Spiders/data.csv') as csvfile: reader = csv.reader(csvfile)data1 = [str(row[1])[0:2] for row in reader]print(data1) print(type(data1))#先变成集合得到seq中的所有元素,避免重复遍历 set_seq = set(data1) rst = [] for item in set_seq: rst.append((item,data1.count(item)))#添加元素及出现个数 rst.sort() print(type(rst)) print(rst)with open("time2.csv", "w+", newline='', encoding='utf-8') as f: writer = csv.writer(f, delimiter=',') for i in rst:# 对于每一行的,将这一行的每个元素分别写在对应的列中 writer.writerow(i)with open('time2.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x) with open('time2.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader] print(y1)

4.统计最近评论数 py1.py
# coding=gbk import csvfrom pyecharts import options as opts from sympy.combinatorics import Subset from wordcloud import WordCloudwith open('../Spiders/data.csv') as csvfile: reader = csv.reader(csvfile)data1 = [str(row[0]) for row in reader] #print(data1) print(type(data1))#先变成集合得到seq中的所有元素,避免重复遍历 set_seq = set(data1) rst = [] for item in set_seq: rst.append((item,data1.count(item)))#添加元素及出现个数 rst.sort() print(type(rst)) print(rst)with open("time1.csv", "w+", newline='', encoding='utf-8') as f: writer = csv.writer(f, delimiter=',') for i in rst:# 对于每一行的,将这一行的每个元素分别写在对应的列中 writer.writerow(i)with open('time1.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x) with open('time1.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader]print(y1)

三. 数据分析 数据分析方面:涉及到了词云图,条形,折线,饼图,后三者是对评论时间与主演占比的分析,然而腾讯的评论时间是以时间戳的形式显示,所以要进行转换,再去统计出现次数,最后,新加了对评论内容的情感分析。
1.制作词云图
wc.py
import numpy as np import re import jieba from wordcloud import WordCloud from matplotlib import pyplot as plt from PIL import Image# 上面的包自己安装,不会的就百度f = open('content.txt', 'r', encoding='utf-8')# 这是数据源,也就是想生成词云的数据 txt = f.read()# 读取文件 f.close()# 关闭文件,其实用with就好,但是懒得改了 # 如果是文章的话,需要用到jieba分词,分完之后也可以自己处理下再生成词云 newtxt = re.sub("[A-Za-z0-9!%[],\。]", "", txt) print(newtxt) words = jieba.lcut(newtxt)img = Image.open(r'wc.jpg')# 想要搞得形状 img_array = np.array(img)# 相关配置,里面这个collocations配置可以避免重复 wordcloud = WordCloud( background_color="white", width=1080, height=960, font_path="../文悦新青年.otf", max_words=150, scale=10,#清晰度 max_font_size=100, mask=img_array, collocations=False).generate(newtxt)plt.imshow(wordcloud) plt.axis('off') plt.show() wordcloud.to_file('wc.png')

轮廓图:wc.jpg
用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

在这里插入图片描述
词云图:result.png (注:这里要把英文字母过滤掉)
用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

2.制作最近评论数条形图 DrawBar.py
# encoding: utf-8 import csv import pyecharts.options as opts from pyecharts.charts import Bar from pyecharts.globals import ThemeTypeclass DrawBar(object):"""绘制柱形图类""" def __init__(self): """创建柱状图实例,并设置宽高和风格""" self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.LIGHT))def add_x(self): """为图形添加X轴数据""" with open('time1.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x)self.bar.add_xaxis( xaxis_data=https://www.it610.com/article/x,)def add_y(self): with open('time1.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader]print(y1)"""为图形添加Y轴数据,可添加多条""" self.bar.add_yaxis(# 第一个Y轴数据 series_name="评论数",# Y轴数据名称 y_axis=y1,# Y轴数据 label_opts=opts.LabelOpts(is_show=True,color="black"),# 设置标签 bar_max_width='100px',# 设置柱子最大宽度 )def set_global(self): """设置图形的全局属性""" #self.bar(width=2000,height=1000) self.bar.set_global_opts( title_opts=opts.TitleOpts(# 设置标题 title='雪中悍刀行近日评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35)), tooltip_opts=opts.TooltipOpts(# 提示框配置项(鼠标移到图形上时显示的东西) is_show=True,# 是否显示提示框 trigger="axis",# 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线跟随鼠标移动,并显示提示信息) axis_pointer_type="cross"# 指示器类型(cross将会生成两条分别垂直于X轴和Y轴的虚线,不启用trigger才会显示完全) ), toolbox_opts=opts.ToolboxOpts(),# 工具箱配置项(什么都不填默认开启所有工具))def draw(self): """绘制图形"""self.add_x() self.add_y() self.set_global() self.bar.render('../Html/DrawBar.html')# 将图绘制到 test.html 文件内,可在浏览器打开 def run(self): """执行函数""" self.draw()if __name__ == '__main__': app = DrawBar()app.run()

效果图:DrawBar.html
用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

3.制作每小时评论条形图 DrawBar2.py
# encoding: utf-8 # encoding: utf-8 import csv import pyecharts.options as opts from pyecharts.charts import Bar from pyecharts.globals import ThemeTypeclass DrawBar(object):"""绘制柱形图类""" def __init__(self): """创建柱状图实例,并设置宽高和风格""" self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.MACARONS))def add_x(self): """为图形添加X轴数据""" str_name1 = '点'with open('time2.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0] + str_name1) for row in reader] print(x)self.bar.add_xaxis( xaxis_data=https://www.it610.com/article/x )def add_y(self): with open('time2.csv') as csvfile: reader = csv.reader(csvfile) y1 = [int(row[1]) for row in reader]print(y1)"""为图形添加Y轴数据,可添加多条""" self.bar.add_yaxis(# 第一个Y轴数据 series_name="评论数",# Y轴数据名称 y_axis=y1,# Y轴数据 label_opts=opts.LabelOpts(is_show=False),# 设置标签 bar_max_width='50px',# 设置柱子最大宽度)def set_global(self): """设置图形的全局属性""" #self.bar(width=2000,height=1000) self.bar.set_global_opts( title_opts=opts.TitleOpts(# 设置标题 title='雪中悍刀行各时间段评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35)), tooltip_opts=opts.TooltipOpts(# 提示框配置项(鼠标移到图形上时显示的东西) is_show=True,# 是否显示提示框 trigger="axis",# 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线跟随鼠标移动,并显示提示信息) axis_pointer_type="cross"# 指示器类型(cross将会生成两条分别垂直于X轴和Y轴的虚线,不启用trigger才会显示完全) ), toolbox_opts=opts.ToolboxOpts(),# 工具箱配置项(什么都不填默认开启所有工具))def draw(self): """绘制图形"""self.add_x() self.add_y() self.set_global() self.bar.render('../Html/DrawBar2.html')# 将图绘制到 test.html 文件内,可在浏览器打开 def run(self): """执行函数""" self.draw()if __name__ == '__main__': app = DrawBar()app.run()

效果图:DrawBar2.html
用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

4.制作近日评论数饼图pie_pyecharts.py
import csv from pyecharts import options as opts from pyecharts.charts import Pie from random import randint from pyecharts.globals import ThemeType with open('time1.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]) for row in reader] print(x) with open('time1.csv') as csvfile: reader = csv.reader(csvfile) y1 = [float(row[1]) for row in reader] print(y1) num = y1 lab = x ( Pie(init_opts=opts.InitOpts(width='1700px',height='450px',theme=ThemeType.LIGHT))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title="雪中悍刀行近日评论统计", title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(pos_top="10%", pos_left="1%",# 图例位置调整 ),) .add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[845, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[1380, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图 ).render('pie_pyecharts.html')

效果图
用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

5.制作每小时评论饼图pie_pyecharts2.py
import csv from pyecharts import options as opts from pyecharts.charts import Pie from random import randint from pyecharts.globals import ThemeType str_name1 = '点' with open('time2.csv') as csvfile: reader = csv.reader(csvfile) x = [str(row[0]+str_name1) for row in reader] print(x) with open('time2.csv') as csvfile: reader = csv.reader(csvfile) y1 = [int(row[1]) for row in reader]print(y1) num = y1 lab = x ( Pie(init_opts=opts.InitOpts(width='1650px',height='500px',theme=ThemeType.LIGHT,))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title="雪中悍刀行每小时评论统计" ,title_textstyle_opts=opts.TextStyleOpts(font_size=27)), legend_opts=opts.LegendOpts(pos_top="8%", pos_left="4%",# 图例位置调整 ), ) .add(series_name='',center=[250, 300], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[810, 300],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[1350, 300],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图 ).render('pie_pyecharts2.html')

效果图
用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

6.制作观看时间区间评论统计饼图pie_pyecharts3.py
# coding=gbk import csv from pyecharts import options as opts from pyecharts.globals import ThemeType from sympy.combinatorics import Subset from wordcloud import WordCloud from pyecharts.charts import Pie from random import randintwith open(/data.csv') as csvfile: reader = csv.reader(csvfile) data2 = [int(row[1].strip('')[0:2]) for row in reader] #print(data2) print(type(data2)) #先变成集合得到seq中的所有元素,避免重复遍历 set_seq = set(data2) list = [] for item in set_seq: list.append((item,data2.count(item)))#添加元素及出现个数 list.sort() print(type(list)) #print(list) with open("time2.csv", "w+", newline='', encoding='utf-8') as f: writer = csv.writer(f, delimiter=',') for i in list:# 对于每一行的,将这一行的每个元素分别写在对应的列中 writer.writerow(i) n = 4#分成n组 m = int(len(list)/n) list2 = [] for i in range(0, len(list), m): list2.append(list[i:i+m])print("凌晨 : ",list2[0]) print("上午 : ",list2[1]) print("下午 : ",list2[2]) print("晚上 : ",list2[3])with open('time2.csv') as csvfile: reader = csv.reader(csvfile) y1 = [int(row[1]) for row in reader]print(y1)n =6 groups = [y1[i:i + n] for i in range(0, len(y1), n)]print(groups)x=['凌晨','上午','下午','晚上'] y1=[] for y1 in groups: num_sum = 0 for groups in y1: num_sum += groups str_name1 = '点' num = y1 lab = x ( Pie(init_opts=opts.InitOpts(width='1500px',height='450px',theme=ThemeType.LIGHT))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title="雪中悍刀行观看时间区间评论统计" , title_textstyle_opts=opts.TextStyleOpts(font_size=30)), legend_opts=opts.LegendOpts(pos_top="8%",# 图例位置调整 ), ) .add(series_name='',center=[260, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[1230, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[750, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图 ).render('pie_pyecharts3.html')

效果图
用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

7.制作雪中悍刀行主演提及占比饼图pie_pyecharts4.py
import csv from pyecharts import options as opts from pyecharts.charts import Pie from random import randint from pyecharts.globals import ThemeType f = open('content.txt', 'r', encoding='utf-8')# 这是数据源,也就是想生成词云的数据 words = f.read()# 读取文件 f.close()# 关闭文件,其实用with就好,但是懒得改了name=["张若昀","李庚希","胡军"]print(name) count=[float(words.count("张若昀")), float(words.count("李庚希")), float(words.count("胡军"))] print(count) num = count lab = name ( Pie(init_opts=opts.InitOpts(width='1650px',height='450px',theme=ThemeType.LIGHT))#默认900,600 .set_global_opts( title_opts=opts.TitleOpts(title="雪中悍刀行主演提及占比", title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts( pos_top="3%", pos_left="33%",# 图例位置调整 ),) .add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图 .add(series_name='',center=[800, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图 .add(series_name='', center=[1300, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图 ).render('pie_pyecharts4.html')

效果图
用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

8.评论内容情感分析SnowNLP.py
import numpy as np from snownlp import SnowNLP import matplotlib.pyplot as pltf = open('content.txt', 'r', encoding='UTF-8') list = f.readlines() sentimentslist = [] for i in list: s = SnowNLP(i)print(s.sentiments) sentimentslist.append(s.sentiments) plt.hist(sentimentslist, bins=np.arange(0, 1, 0.01), facecolor='g') plt.xlabel('Sentiments Probability') plt.ylabel('Quantity') plt.title('Analysis of Sentiments') plt.show()

效果图(情感各分数段出现频率)

用Python爬取了《雪中悍刀行》数据,并将其可视化分析后,终于知道它为什么这么火了~
文章图片

SnowNLP情感分析是基于情感词典实现的,其简单的将文本分为两类,积极和消极,返回值为情绪的概率,也就是情感评分在[0,1]之间,越接近1,情感表现越积极,越接近0,情感表现越消极。

    推荐阅读