Tensorflow 逻辑回归处理mnist数据集

import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist_data/', one_hot=True) train_img = mnist.train.images train_label = mnist.train.labels test_img = mnist.test.images test_label = mnist.test.labelsx = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10]))actv = tf.nn.softmax(tf.matmul(x, W) + b)cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(actv), reduction_indices=1))learning_rate = 0.01 optm = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)pred = tf.equal(tf.argmax(actv, 1), tf.argmax(y, 1))accr = tf.reduce_mean(tf.cast(pred, tf.float32))init = tf.global_variables_initializer() training_epochs = 100 batch_size = 100 display_step = 5 sess = tf.Session() sess.run(init) for epoch in range(training_epochs): avg_cost = 0. num_batch = int(mnist.train.num_examples / batch_size) for i in range(num_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) feeds_train = {x: batch_xs, y: batch_ys} sess.run(optm, feed_dict=feeds_train) avg_cost += sess.run(cost, feed_dict=feeds_train) / num_batchif epoch % display_step == 0: feeds_test = {x: mnist.test.images, y: mnist.test.labels} train_acc = sess.run(accr, feed_dict=feeds_train) test_acc = sess.run(accr, feed_dict=feeds_test) print("Epoch: %03d/%03d cost: %.9f train_acc: %.3f test_acc: %.3f" % (epoch, training_epochs, avg_cost, train_acc, test_acc)) print("DONE")

    推荐阅读