SPOJ DISUBSTR - Distinct Substrings or SUBST1 - New Distinct Substrings 【不同子串数目】

题目1链接:SPOJ DISUBSTR - Distinct Substrings
题目1链接:SPOJ SUBST1 - New Distinct Substrings
DISUBSTR - Distinct Substrings
no tags
Given a string, we need to find the total number of its distinct substrings.
【SPOJ DISUBSTR - Distinct Substrings or SUBST1 - New Distinct Substrings 【不同子串数目】】Input
T- number of test cases. T<=20;
Each test case consists of one string, whose length is <= 1000
Output
For each test case output one number saying the number of distinct substrings.
Example
Sample Input:
2
CCCCC
ABABA
Sample Output:
5
9
Explanation for the testcase with string ABABA:
len=1 : A,B
len=2 : AB,BA
len=3 : ABA,BAB
len=4 : ABAB,BABA
len=5 : ABABA
Thus, total number of distinct substrings is 9
题意:给定一个字符串,求不同子串的数目。
思路:每一个子串一定是某些后缀的前缀,我们只需要统计所有后缀里面的不同前缀即可。对于后缀sa[i]而言,它的前缀有n-sa[i]个。而对于两个相邻的后缀sa[i-1],sa[i],重复的前缀有H[i]个,我们从前到后扫一遍即可。
第二道题把数组开大点就OK了。
AC代码:

//#include #include #include #include #include #include #include #include #include #include #define PI acos(-1.0) #define CLR(a, b) memset(a, (b), sizeof(a)) #define fi first #define se second #define ll o<<1 #define rr o<<1|1 using namespace std; typedef long long LL; typedef pair pii; const int MAXN = 2*1e3 + 10; const int pN = 1e6; // <= 10^7 const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; void add(LL &x, LL y) { x += y; x %= MOD; } int cmp(int *r, int a, int b, int l) { return (r[a] == r[b]) && (r[a+l] == r[b+l]); } int wa[MAXN], wb[MAXN], ws[MAXN], wv[MAXN]; int R[MAXN]; //下标0->n-1 存储的是1->n之间的数 int H[MAXN]; //下标2->nH[i] >= H[i-1]-1 void DA(int *r, int *sa, int n, int m) { int i, j, p, *x = wa, *y = wb, *t; for(i = 0; i < m; i++) ws[i] = 0; for(i = 0; i < n; i++) ws[x[i]=r[i]]++; for(i = 1; i < m; i++) ws[i] += ws[i-1]; for(i = n-1; i >= 0; i--) sa[--ws[x[i]]] = i; for(j = 1, p = 1; p < n; j *= 2, m = p) { for(p = 0, i = n-j; i < n; i++) y[p++] = i; for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j; for(i = 0; i < n; i++) wv[i] = x[y[i]]; for(i = 0; i < m; i++) ws[i] = 0; for(i = 0; i < n; i++) ws[wv[i]]++; for(i = 1; i < m; i++) ws[i] += ws[i-1]; for(i = n-1; i >= 0; i--) sa[--ws[wv[i]]] = y[i]; for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++) x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p-1 : p++; } } void calh(int *r, int *sa, int n) { int i, j, k = 0; for(i = 1; i <= n; i++) R[sa[i]] = i; for(i = 0; i < n; H[R[i++]] = k) for(k ? k-- : 0, j = sa[R[i]-1]; r[i+k] == r[j+k]; k++); } int sa[MAXN]; //下标从1->n,存储的是0->n-1之间的数 int a[MAXN]; char str[MAXN]; int main() { int t; scanf("%d", &t); while(t--) { scanf("%s", str); int n = strlen(str); int Max = 0; for(int i = 0; i < n; i++) { a[i] = str[i]; Max = max(Max, a[i]); } a[n] = 0; DA(a, sa, n+1, Max+1); //

    推荐阅读