|字号 订阅
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理
定理:gcd(a,b) = gcd(b,a % b)
证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有d|a, d|b,而r = a - kb,因此d|r,因此d是(b,a mod b)的公约数
假设d 是(b,a mod b)的公约数,则d | b , d |r ,但是a = kb +r因此d也是(a,b)的公约数,因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
欧几里德算法C语言描述:
int Gcd(int a, int b)
{
return b==0 ? a : Gcd(b, a % b);
}
迭代形式:
int Gcd(int a, int b)
{
while(b != 0)
{
int r = b;
b = a % b;
a = r;
}
return a;
}
补充: 扩展欧几里德算法是用来在已知a, b求解一组x,y使得a*x+b*y=Gcd(a,b)(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。
扩展算法:求两元一次方程
int exGcd(int a, int b, int &x, int &y)
{
if(b == 0){
x = 1;
y = 0;
return a;
}
int r = exGcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
return r;
}
把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。
可以这样思考:
对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')
由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)
那么可以得到:
a'x + b'y = Gcd(a', b')===>bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b)===>ay +b(x - a / b*y) = Gcd(a, b)
因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y).
在网上看了很多关于不定方程方程求解的问题,可都没有说全,都只说了一部分,看了好多之后才真正弄清楚不定方程的求解全过程,步骤如下:
求a * x + b * y = n的整数解。
1、先计算Gcd(a,b),若n不能被Gcd(a,b)整除,则方程无整数解;否则,在方程两边同时除以Gcd(a,b),得到新的不定方程a' * x + b' * y = n',此时Gcd(a',b')=1;
2、利用上面所说的欧几里德算法求出方程a' * x + b' * y = 1的一组整数解x0,y0,则n' * x0,n' * y0是方程a' * x + b' * y = n'的一组整数解;
3、根据数论中的相关定理,可得方程a' * x + b' * y = n'的所有整数解为:
x = n' * x0 + b' * t
y = n' * y0 - a' * t
(t为整数)
上面的解也就是a * x + b * y = n 的全部整数解。
步骤如下:
扩展欧几里德算法-求解不定方程,线性同余方程:
解不定方程ax+by=n的步骤如下:
(1)计算gcd(a,b).若gcd(a,b)不能整除n,则方程无整数解;否则,在方程的两边同除以gcd(a,b),
得到新的不定方程a'x+b'y=n',此时gcd(a',b')=1
(2)求出不定方程a'x+b'y=1的一组整数解x0,y0,则n'x0,n'y0是方程a'x+b'y=n'的一组整数解。
(3)根据&@^%W#&定理,可得方程a'x+b'y=n'的所有整数解为:
x=n'x0+b't
y=n'y0-a't
(t为整数)
这也就是方程ax+by=n的所有整数解
利用扩展的欧几里德算法,计算gcd(a,b)和满足d=gcd(a,b)=ax0+by0的x0和y0,也就是求出了满足a'x0+b'y0=1的一组整数解。因此可得:
x=n/d*x0+b/d*t
y=n/d*y0-a/d*t
(t是整数)
【数论(欧几里得算法)】
推荐阅读
- ACM|HDU 5322 Hope (CDQ分治+NTT)
- 牛客算法周周练15——A、B
- Codeforces Round #609 (Div. 2)——C. Long Beautiful Integer(思维)
- FZU - 2107题解
- ACM OJ 2036 多边形面积计算
- #|【牛客】牛客练习赛67-E-牛妹游历城市——位运算优化
- ACM|回文树(自动机)(练习和总结)
- acm|扩展欧几里德算法(附证明)
- ACM|[dsu] codeforces 375D. Tree and Queries
- ACM|codeforces 732-D. Exams (二分)