D. Valid Sets time limit per test
1 second memory limit per test
256 megabytes input
standard input output
standard output As you know, an undirected connected graph with n nodes and n?-?1 edges is called a tree. You are given an integer d and a tree consisting of n nodes. Each node i has a value ai associated with it.
We call a set S of tree nodes valid if following conditions are satisfied:
- S is non-empty.
- S is connected. In other words, if nodes u and v are in S, then all nodes lying on the simple path between u and v should also be presented in S.
-
文章图片
.
Input The first line contains two space-separated integers d (0?≤?d?≤?2000) and n (1?≤?n?≤?2000).
The second line contains n space-separated positive integers a1,?a2,?...,?an(1?≤?ai?≤?2000).
Then the next n?-?1 line each contain pair of integers u and v (1?≤?u,?v?≤?n) denoting that there is an edge between u and v. It is guaranteed that these edges form a tree.
Output Print the number of valid sets modulo 1000000007.
Sample test(s) input
1 4 2 1 3 2 1 2 1 3 3 4
output
8
input
0 3 1 2 3 1 2 2 3
output
3
input
4 8 7 8 7 5 4 6 4 10 1 6 1 2 5 8 1 3 3 5 6 7 3 4
output
41
Note In the first sample, there are exactly 8 valid sets: {1},?{2},?{3},?{4},?{1,?2},?{1,?3},?{3,?4} and {1,?3,?4}. Set {1,?2,?3,?4} is not valid, because the third condition isn't satisfied. Set {1,?4} satisfies the third condition, but conflicts with the second condition.
题意:RT
思路:树形DP,dp[u]表示以u为根,且它的所有子树的点v的权值都不超过它,且满足 w[u]-w[v]<=d 的方案数
对于每个点为根这样算一遍就好了,注意减去算重的情况,即相邻多个点的权值相等,可以用点的代号去重(即规定只能从代号大的往小的DP)
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int MAXN = 2005;
const int MOD = (int)1e9+7;
int edge[MAXN<<1];
int next[MAXN<<1];
int head[MAXN];
int esz;
int ww[MAXN];
ll dp[MAXN];
int D;
void addedge(int u,int v)
{
edge[esz]=v;
next[esz]=head[u];
head[u]=esz++;
}void dfs(int u,int p,int w,int root)
{
if((w>ww[u]&&w-ww[u]<=D) || (w==ww[u]&&root>=u)){dp[u]=1;
for(int i=head[u];
i!=-1;
i=next[i]){
int v=edge[i];
if(v==p)continue;
dfs(v,u,w,root);
dp[u]=dp[u]*((dp[v]+1)%MOD)%MOD;
}
}
}int main()
{
int n;
scanf("%d%d",&D,&n);
memset(head,-1,sizeof(head));
esz=0;
for(int i=1;
i<=n;
i++)
scanf("%d",&ww[i]);
for(int i=1;
i
推荐阅读
- 树形dp|Codeforces 917D Stranger Trees 树形dp+容斥原理
- Codeforces Round #275 (Div. 1)D(树形DP)
- online|hdu5834Magic boy Bi Luo with his excited tree
- online|bzoj2286: [Sdoi2011消耗战
- #|Codeforces Round #530 (Div. 2) F. Cookies(树形DP+线段树)
- 线段树|191024省选测试题解
- 边分治|[LOJ2339][虚树][边分治][树形DP]WC2018(通道)