Luogu|Luogu 5170 【模板】类欧几里得算法

原理不难但是写起来非常复杂的东西。
我觉得讲得非常好懂的博客。传送门
我们设
$$f(a, b, c, n) = \sum_{i = 0}^{n}\left \lfloor \frac{ai + b}{c} \right \rfloor$$
【Luogu|Luogu 5170 【模板】类欧几里得算法】$$g(a, b, c, n) = \sum_{i = 0}^{n}i\left \lfloor \frac{ai + b}{c} \right \rfloor$$
$$h(a, b, c, n) = \sum_{i = 0}^{n}\left \lfloor \frac{ai + b}{c} \right \rfloor^2$$
先考虑一个结论
$$\left \lfloor \frac{Ax}{y} \right \rfloor = \left \lfloor \frac{A(x \mod y)}{y} \right \rfloor + A\left \lfloor \frac{x}{y} \right \rfloor$$
那么有
$$\left \lfloor \frac{ai + b}{c} \right \rfloor = \left \lfloor \frac{(a \mod c)i + (b \mod c)}{c} \right \rfloor + i\left \lfloor \frac{a}{c} \right \rfloor + \left \lfloor \frac{b}{c} \right \rfloor$$
这个东西可以把$a \geq c$ 或者$b \geq c$的情况转化成$a,b < c$的情况。
F 先看看这个比较好做的$f$。
注意到当$a \geq c$或者$b \geq c$的时候,我们可以用以上的结论把$a$或者$b$降下来,有
$$f(a, b, c, n) = \left \lfloor \frac{b}{c} \right \rfloor(n + 1) + \left \lfloor \frac{a}{c} \right \rfloor \frac{n(n + 1)}{2} + f(a \mod c, b \mod c, c, n)$$
那么当$a, b < c$的时候,有
$$f(a, b, c, n) = \sum_{i = 0}^{n}\sum_{j = 1}^{m}[\left \lfloor \frac{ai + b}{c} \right \rfloor \geq j]$$
为了方便把$\left \lfloor \frac{an + b}{c} \right \rfloor$记为$m$。
$$f(a, b, c, n) = \sum_{i = 0}^{n}\sum_{j = 0}^{m - 1}[\left \lfloor \frac{ai + b}{c} \right \rfloor \geq j + 1]$$
$$= \sum_{i = 0}^{n}\sum_{j = 0}^{m - 1}[ai \geq cj + c - b]$$
$$= \sum_{i = 0}^{n}\sum_{j = 0}^{m - 1}[ai > cj + c - b - 1]$$
$$= \sum_{i = 0}^{n}\sum_{j = 0}^{m - 1}[i > \left \lfloor \frac{cj + c - b - 1}{a} \right \rfloor]$$
注意到这时候$i$这一项可以直接算了。
$$f(a, b, c, n) = \sum_{j = 0}^{m - 1}(n -\left \lfloor \frac{cj + c - b - 1}{a} \right \rfloor)$$
$$= nm - f(c, c - b - 1, a, m - 1)$$
比较方便。
G 按照套路先做$a \geq c$或者$b \geq c$的情况。
$$g(a, b, c, n) = \left \lfloor \frac{b}{c} \right \rfloor\frac{n(n + 1)}{2} + \left \lfloor \frac{a}{c} \right \rfloor \frac{n(n + 1)(2n + 1)}{6}+ g(a \mod c, b \mod c, c, n)$$
然后接着按照上述套路弄$a, b < c$的情况。
$$g(a, b, c, n) = \sum_{j = 0}^{m - 1}\frac{(n - \left \lfloor \frac{cj + c - b - 1}{a} \right \rfloor)(n + 1 + \left \lfloor \frac{cj + c - b - 1}{a} \right \rfloor)}{2}$$
$$= \frac{1}{2}(mn(n + 1) - f(c, c - b - 1, a, m - 1) - h(c, c - b - 1, a, m - 1))$$
还要解决$h$。
H 当$a \geq c$或者$b \geq c$的时候
$$h(a, b, c, n) = (n + 1)\left \lfloor \frac{b}{c} \right \rfloor^2 + \frac{n(n + 1)(2n + 1)}{6}\left \lfloor \frac{a}{c} \right \rfloor^2 + n(n + 1)\left \lfloor \frac{b}{c} \right \rfloor\left \lfloor \frac{a}{c} \right \rfloor + h(a \mod c, b \mod c, c, n) + 2\left \lfloor \frac{a}{c} \right \rfloor g(a \mod c, b \mod c, c, n) + 2\left \lfloor \frac{b}{c} \right \rfloor f(a \mod c, b \mod c, c, n)$$
好麻烦啊……
当$a, b < c$的时候需要一些操作
$$n^2 = 2 \times \frac{n(n + 1)}{2} - n = 2\sum_{i = 1}^{n}i - n$$
可以得到
$$h(a, b, c, n) = \sum_{i = 0}^{n}(2\sum_{j = 1}^{\left \lfloor \frac{ai + b}{c} \right \rfloor}j - \left \lfloor \frac{ai + b}{c} \right \rfloor)$$
$$= 2\sum_{i = 0}^{n}\sum_{j = 1}^{\left \lfloor \frac{ai + b}{c} \right \rfloor}j - f(a, b, c, n)$$
$$= 2\sum_{j = 0}^{m - 1}(j + 1)\sum_{i = 0}^{n}[\left \lfloor \frac{ai + b}{c} \right \rfloor \geq j + 1] - f(a, b, c, n)$$
$$= 2\sum_{j = 0}^{m - 1}(j + 1)(n - \left \lfloor \frac{cj + c - b - 1}{a} \right \rfloor) - f(a, b, c, n)$$
$$= nm(m + 1) - 2g(c, c - b - 1, a, m - 1) - 2f(c, c - b - 1, a, m - 1) - f(a, b, c, n)$$
大概就是这样了。

在计算的时候如果只考虑$(a, c)$这两项的话相当于每一次把$(a, c)$变成了$(c, a \% c)$,所以时间复杂度和欧几里得算法相同,递归层数是$log$层。
时间复杂度$O(Tlogn)$。
因为递归的式子很一致,在计算的时候应当三个东西一起算比较快。
Code:
Luogu|Luogu 5170 【模板】类欧几里得算法
文章图片
Luogu|Luogu 5170 【模板】类欧几里得算法
文章图片

#include #include using namespace std; typedef long long ll; const ll P = 998244353LL; template inline void read(T &X) { X = 0; char ch = 0; T op = 1; for (; ch > '9'|| ch < '0'; ch = getchar()) if (ch == '-') op = -1; for (; ch >= '0' && ch <= '9'; ch = getchar()) X = (X << 3) + (X << 1) + ch - 48; X *= op; }template inline void inc(T &x, T y) { x += y; if (x >= P) x -= P; }template inline void sub(T &x, T y) { x -= y; if (x < 0) x += P; }inline ll fpow(ll x, ll y) { ll res = 1; for (; y > 0; y >>= 1) { if (y & 1) res = res * x % P; x = x * x % P; } return res; }namespace Likegcd { struct Node { ll f, g, h; }; #define f(now) now.f #define g(now) now.g #define h(now) now.hconst ll inv2 = fpow(2, P - 2); const ll inv6 = fpow(6, P - 2); inline Node solve(ll a, ll b, ll c, ll n) { Node res; if (!a) { f(res) = (b / c) * (n + 1) % P; g(res) = (b / c) * (n + 1) % P * n % P * inv2 % P; h(res) = (b / c) * (b / c) % P * (n + 1) % P; return res; }f(res) = g(res) = h(res) = 0; if (a >= c || b >= c) { Node tmp = solve(a % c, b % c, c, n); inc(f(res), (a / c) * n % P * (n + 1) % P * inv2 % P); inc(f(res), (b / c) * (n + 1) % P); inc(f(res), f(tmp)); inc(g(res), (a / c) * n % P * (n + 1) % P * ((2 * n + 1) % P) % P * inv6 % P); inc(g(res), (b / c) * n % P * (n + 1) % P * inv2 % P); inc(g(res), g(tmp)); inc(h(res), (a / c) * (a / c) % P * n % P * (n + 1) % P * ((2 * n + 1) % P) % P * inv6 % P); inc(h(res), (b / c) * (b / c) % P * (n + 1) % P); inc(h(res), (a / c) * (b / c) % P * n % P * (n + 1) % P); inc(h(res), h(tmp)); inc(h(res), 2LL * (a / c) % P * g(tmp) % P); inc(h(res), 2LL * (b / c) % P * f(tmp) % P); return res; }if (a < c && b < c) { ll m = (a * n + b) / c; Node tmp = solve(c, c - b - 1, a, m - 1); f(res) = n * m % P; sub(f(res), f(tmp)); g(res) = n * (n + 1) % P * m % P; sub(g(res), f(tmp)); sub(g(res), h(tmp)); g(res) = g(res) * inv2 % P; h(res) = n * m % P * (m + 1) % P; sub(h(res), 2LL * g(tmp) % P); sub(h(res), 2LL * f(tmp) % P); sub(h(res), f(res)); return res; }return res; }}int main() { int testCase; read(testCase); for (ll a, b, c, n; testCase--; ) { read(n), read(a), read(b), read(c); Likegcd :: Node ans = Likegcd :: solve(a, b, c, n); printf("%lld %lld %lld\n", ans.f, ans.h, ans.g); } return 0; }

View Code
转载于:https://www.cnblogs.com/CzxingcHen/p/10365060.html

    推荐阅读