Hash原理|Hash原理 另外一篇
1. HashMap的数据结构 数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端。
数组
数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;
链表
链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。
哈希表
那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。哈希表((Hash table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。
【Hash原理|Hash原理 另外一篇】哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法—— 拉链法,我们可以理解为“链表的数组” ,如图:
文章图片
文章图片
从上图我们可以发现哈希表是由数组+链表组成的,一个长度为16的数组中,每个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是通过hash(key)%len获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。
HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。
首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。
/** * The table, resized as necessary. Length MUST Always be a power of two. */ transient Entry[] table;
2. HashMap的存取实现 既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,大致是这样实现:
// 存储时:
int hash
= key.hashCode();
// 这个hashCode方法这里不详述,只要理解每个key的hash是一个固定的int值
int index
= hash
% Entry[].length;
Entry[index]
= value;
// 取值时:
int hash
= key.hashCode();
int index
= hash
% Entry[].length;
return Entry[index];
1)put
疑问:如果两个key通过hash%Entry[].length得到的index相同,会不会有覆盖的危险? 这里HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了。
public V put(K key, V value) { if (key == null) return putForNullKey(value);
//null总是放在数组的第一个链表中 int hash = hash(key.hashCode());
int i = indexFor(hash,table.length);
//遍历链表 for (Entry
void addEntry(int hash, K key, V value, int bucketIndex) { Entry
2)get
public V get(Object key) { if (key == null) return getForNullKey();
int hash = hash(key.hashCode());
//先定位到数组元素,再遍历该元素处的链表 for (Entry
3)null key的存取
null key总是存放在Entry[]数组的第一个元素。
private V putForNullKey(V value) { for (Entry
HashMap存取时,都需要计算当前key应该对应Entry[]数组哪个元素,即计算数组下标;算法如下:
/** * Returns index for hash code h. */ static intindexFor(int h,int length) { return h & (length-1);
} 按位取并,作用上相当于取模mod或者取余%。 这意味着数组下标相同,并不表示hashCode相同。 5)table初始大小
public HashMap(int initialCapacity, float loadFactor) { ..... // Find a power of 2 >= initialCapacity int capacity = 1;
while (capacity < initialCapacity) capacity <<= 1;
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
table = new Entry[capacity];
init();
} 注意table初始大小并不是构造函数中的initialCapacity!!
而是 >= initialCapacity的2的n次幂!!!!
————为什么这么设计呢?——
3. 解决hash冲突的办法
Java中hashmap的解决办法就是采用的链地址法。
4. 再散列rehash过程 当哈希表中的条目数超出了加载因子与当前容量的乘积时,通过调用 rehash 方法将容量翻倍。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,需要创建一张新表,将原表的映射到新表中。
/** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two;
* must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) { Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE;
return;
} Entry[] newTable = new Entry[newCapacity];
transfer(newTable);
table = newTable;
threshold = (int)(newCapacity * loadFactor);
}
/** * Transfers all entries from current table to newTable. */ void transfer(Entry[] newTable) { Entry[] src = https://www.it610.com/article/table;
int newCapacity = newTable.length;
for (int j = 0;
j < src.length;
j++) { Entry
推荐阅读
- 做一件事情的基本原理是什么()
- 【读书笔记】贝叶斯原理
- SG平滑轨迹算法的原理和实现
- “写作宝典”《金字塔原理》之读书笔记
- Spring|Spring 框架之 AOP 原理剖析已经出炉!!!预定的童鞋可以识别下发二维码去看了
- Spring|Spring Boot 自动配置的原理、核心注解以及利用自动配置实现了自定义 Starter 组件
- Vue源码分析—响应式原理(二)
- MYSQL主从同步的实现
- (1)redis集群原理及搭建与使用(1)
- Git学习-笔记摘要