Pandas中set_index和reset_index的用法及区别

【Pandas中set_index和reset_index的用法及区别】1.set_index
DataFrame可以通过set_index方法,可以设置单索引和复合索引。
DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)
append添加新索引,drop为False,inplace为True时,索引将会还原为列。

In [307]: data Out[307]: abcd 0baronez1.0 1bartwoy2.0 2fooonex3.0 3footwow4.0 In [308]: indexed1 = data.set_index('c') In [309]: indexed1 Out[309]: abd c zbarone1.0 ybartwo2.0 xfooone3.0 wfootwo4.0 In [310]: indexed2 = data.set_index(['a', 'b']) In [311]: indexed2 Out[311]: cd ab bar onez1.0 twoy2.0 foo onex3.0 twow4.0

2.reset_index
reset_index可以还原索引,重新变为默认的整型索引
DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=”)
level控制了具体要还原的那个等级的索引
drop为False则索引列会被还原为普通列,否则会丢失
In [318]: data Out[318]: cd ab bar onez1.0 twoy2.0 foo onex3.0 twow4.0 In [319]: data.reset_index() Out[319]: abcd 0baronez1.0 1bartwoy2.0 2fooonex3.0 3footwow4.0

    推荐阅读