opencv学习笔记(1) filter相关 【C++基础|opencv学习笔记(1)】文章相关代码参考opencv官方指导
filter的具体原理实现
#include
#include
#include
#include using namespace std;
using namespace cv;
void Sharpen(const Mat& myImage,Mat& Result);
int main(int argc, char** argv)
{
const char* filename = argc >= 2 ? argv[1] : "../sc2-3.jpg";
Mat src, dst0, dst1;
if (argc >= 3 && !strcmp("G",argv[2]))
src = https://www.it610.com/article/imread(filename, IMREAD_GRAYSCALE);
else
src = imread(filename, IMREAD_COLOR);
if (src.empty()) {
cerr <<"Can not open the file [" << filename << "]" << endl;
return -1;
}namedWindow("input", WINDOW_AUTOSIZE);
namedWindow("output", WINDOW_AUTOSIZE);
imshow("input", src);
double t = (double)getTickCount();
Sharpen( src, dst0 );
t = ((double)getTickCount() - t)/getTickFrequency();
cout << "Hand written function time passed in seconds: " << t << endl;
imshow( "output", dst0 );
waitKey(0);
}void Sharpen(const Mat& myImage,Mat& Result)
{
CV_Assert(myImage.depth() == CV_8U);
const int nChannels = myImage.channels();
Result.create(myImage.size(),myImage.type());
for (int j = 1;
j < myImage.rows-1;
++j) {
const uchar *previous = myImage.ptr(j - 1);
const uchar *current = myImage.ptr(j);
const uchar *next = myImage.ptr(j + 1);
uchar *output = Result.ptr(j);
for (int i = nChannels;
i < nChannels*(myImage.cols-1);
++i) {
*output++ = saturate_cast(5 * current[i]
- current[i - nChannels] - current[i + nChannels] - previous[i] - next[i]);
}Result.row(0).setTo(Scalar(0));
Result.row(Result.rows-1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols-1).setTo(Scalar(0));
}
}
cerr
用于抛出异常。
cerr << "Can not open the file [" << filename << "]" << endl;
- 计算程序运行的时间。
double t = (double)getTickCount();
t = ((double)getTickCount() - t)/getTickFrequency();
myImage.depth()
得到除通道数外的其他参数。myImage.channels();
得到通道数。myImage.type()
得到所有的参数,包括字长类型和通道数。
CV_Assert(myImage.depth() == CV_8U);
const int nChannels = myImage.channels();
Result.create(myImage.size(),myImage.type());
filter2d()
的用法
#include
#include
#include
#include using namespace std;
using namespace cv;
int main(int argc, char** argv)
{
const char* filename = argc >= 2 ? argv[1] : "../sc2-3.jpg";
Mat src, dst1;
if (argc >= 3 && !strcmp("G",argv[2]))
src = https://www.it610.com/article/imread(filename, IMREAD_GRAYSCALE);
else
src = imread(filename, IMREAD_COLOR);
if (src.empty()) {
cerr <<"Can not open the file [" << filename << "]" << endl;
return -1;
}Mat kernel = (Mat_(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
namedWindow("input", WINDOW_AUTOSIZE);
namedWindow("output", WINDOW_AUTOSIZE);
imshow("input", src);
double t = (double)getTickCount();
filter2D(src, dst1, src.depth(), kernel);
t = ((double)getTickCount() - t)/getTickFrequency();
cout << "Built-in filter2D time passed in seconds:" << t << endl;
imshow( "output", dst1 );
waitKey(0);
}
效果
原图
文章图片
处理后的图像
文章图片
可以看到,边缘增强。
推荐阅读
- 技术交流|详解用OpenCV绘制各类几何图形
- python|用Python写个自动批改作业系统
- 深度学习|在Android上部署TF目标检测模型
- python-opencv|opencv缩放
- 图像处理|5分钟学会,使用opencv进行基本的图像操作—读、写、显示、缩放、裁剪(python语言)
- ubuntu|Ubuntu18.04安装opencv3.4.1+opencv_contrib3.4.1
- opencv|opencv.js 之官网教程翻译加代码
- 计算机视觉|Opencv 基于C++识别绿灯
- python|OpenCV-Python实战(21)——OpenCV人脸检测项目在Web端的部署