【课程笔记】中科大凸优化(三)
上节课知识补充
凸锥的几何解释
不断改变形状的平行四边形
文章图片
仿射集、凸锥、凸组合的关系
因为凸集的条件是其余两个条件的并集,因此
- 为什么不是条件越多的,表示范围越小?
因为在定义仿射集、凸集的时候,要求的是“任意的\(\theta\)组合满足“。“任意”的限制越少,反而约束的对象越多(举例:任意人>任意男性>任意男孩),也就越严格(对任意人满足,必然对任意男性、男孩满足)。也就是只要对任意\(\theta_1+\cdots+\theta_k=1\)满足,也就对任意\(\theta_1+\cdots+\theta_k=1,\theta_1,\cdots,\theta_k\ge 0\)满足,因此仿射集必为凸集。
总结:条件的范围越小,结论越弱,越容易成为推论
文章图片
几种重要的凸集 有集合解释的集合
超平面与半空间
- 超平面
文章图片
- 超平面不一定是平面,因此不一定是2维,是比\(x\)维度低一维的集合
- 半空间
文章图片
- 原空间被超平面所划分后的空间
- 球
文章图片
- 二范数表示向量长度(欧氏距离)
- 【【课程笔记】中科大凸优化(三)】证明球是凸集:
- 三角不等式:两边之和不小于第三边
\[\|x+y\|_{2}\le\|x\|_{2}+\|y\|_{2} \]
向量相加时考虑三角不等式
- 柯西不等式:最大的平行四边形是矩形
\[\left|x^{T} y\right| \leq\|x\|_{2}\|y\|_{2} \]
向量内积时考虑柯西不等式
- 三角不等式:两边之和不小于第三边
- 二范数表示向量长度(欧氏距离)
- 椭球
文章图片
- 正定矩阵\(P\)
- 只有方阵才能定义特征值(\(Ax=\lambda x\)因此横纵维度必须一致),为了推广到一般矩阵,就有了奇异值,也就是将原矩阵先转换成一个方阵\(A^T A\)
- 由于对称矩阵特征值非负,因此定义奇异值为新矩阵特征值开根号\(\sqrt{\text{eig}(A^T A)}\)
- 当\(P\)为单位阵的时候,退化为球
- 当\(P\)为对角阵的时候,长短半轴刚好在坐标轴上
- 正定矩阵\(P\)
- 多面体
文章图片
- 有限个半空间(线性不等式)和半平面(线性等式)的交集
- 单纯形
文章图片
文章图片
- 单纯形是\(k\)个构成线性无关向量的点的凸包
- 单纯性维度不能超过空间维度(二维中是三角形,三维中是四面体)
- 证明:任一单纯形一定是一个多面体
思路:构造法,将单纯形内点的表示转化为多面体的表示
【还没完全看懂,之后更新】
- 单纯形是\(k\)个构成线性无关向量的点的凸包
- 对称矩阵集合:\(\mathbf{S}^{n}=\left\{X \in \mathbf{R}^{n \times n} \mid X=X^{T}\right\}\)
- 对称半正定矩阵集合:\(\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}\)
- 证明:是凸锥
用正定的定义:任意\(x\in\mathcal{R}^2\),有\(x^TAX\ge 0\)
- 证明:是凸锥
- 对称正定矩阵集合:\(\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succ 0\right\}\)
推荐阅读
- 笔试-算法|【算法】2021-3-7字节跳动2022春招笔试第一场第二题 (庆祝61)
- 计算机网络笔记|计算机网络之HTTP协议详解
- 计算机网络|【计算机网络】HTTP 协议详解
- 【修订版】Leetcode 88 合并两个有序数组
- 【修订版】Leetcode 300 最长递增子序列
- 【Redis 系列】redis 学习七,那些你不知道的 redis 配置文件详解
- 【C#版本】微信公众号模板消息对接(二)(图文详解)
- COMP3811
- 每日leetcode——92. 反转链表 II
- CMP5327 游戏编程