【实测】Python|【实测】Python 和 C++ 下字符串查找的速度对比
完整格式链接:https://blog.imakiseki.cf/2022/03/07/techdev/python-cpp-string-find-perf-test/
背景
最近在备战一场算法竞赛,语言误选了 Python ,无奈只能着手对常见场景进行语言迁移。而字符串查找的场景在算法竞赛中时有出现。本文即对此场景在 Python 和竞赛常用语言 C++ 下的速度进行对比,并提供相关参数和运行结果供他人参考。
参数
硬件和操作系统
-`root@
.o+`------------
`ooo/OS: Arch Linux ARM aarch64
`+oooo:Host: Raspberry Pi 4 Model B
`+oooooo:Kernel: 5.16.12-1-aarch64-ARCH
-+oooooo+:Uptime: 3 hours, 32 mins
`/:-:++oooo+:Packages: 378 (pacman)
`/++++/+++++++:Shell: zsh 5.8.1
`/++++++++++++++:Terminal: /dev/pts/0
`/+++ooooooooooooo/`CPU: (4) @ 1.500GHz
./ooosssso++osssssso+`Memory: 102MiB / 7797MiB
.oossssso-````/ossssss+`
-osssssso.:ssssssso.
:osssssss/osssso+++.
/ossssssss/+ssssooo/-
`/ossssso+/:--:/+osssso+-
`+sso+:-``.-/+oso:
`++:.`-/+/
.``/
编译环境和解释环境
- Python
- 解释器:Python 3.10.2 (main, Jan 23 2022, 21:20:14) [GCC 10.2.0] on linux
- 交互环境:IPython 8.0.1
- C++
- 编译器:g++ (GCC) 11.2.0
- 编译命令:
g++ test.cpp -Wall -O2 -g -std=c++11 -o test
项目 | 场景 1:平均情况 | 场景 2:较坏情况 |
---|---|---|
字符集 | 小写字母 | abc |
字符分布 | random.choice |
有较强规律性 |
源串长度 | 1,000,000 | 1,000,000 |
模式串长度 | 1,000 | 50 |
模式串出现位置 | 250,000、500,000、750,000 | 750,000 |
模式串出现次数 | 1 | 1 |
str
的 .find()
成员函数,C++ 语言分别使用 string
类的 .find()
成员函数、strstr
标准库函数和用户实现的 KMP 算法。测试对象 | 核心代码 |
---|---|
Python | src.find(pat) |
C++ - test.cpp |
src.find(pat) |
C++ - test_strstr.cpp |
strstr(src, pat) |
C++ - test_kmp.cpp |
KMP(src, pat) |
import random# 场景 1:
# 源串
s = "".join(chr(random.choice(range(ord("a"), ord("z") + 1))) for _ in range(1000000))
# 模式串列表,三个元素各对应一个模式串
p = [s[250000:251000], s[500000:501000], s[750000:751000]]# 场景 2:
# 模式串
p = 'a' + 'b' * 49
# 其他字符片段
_s = "a" + "b" * 48 + "c"
# 源串
s = _s * 15000 + p + _s * 4999# 存储到文件,便于 C++ 程序获取
with open('source.in', 'w') as f:
f.write(s)
with open('pattern.in', 'w') as f:
f.write(p[0])
测试代码 Python
In []: %timeit s.find(p[0])
C++ -
test.cpp
#include
#include
#include
#include
#define LOOP_COUNT (1000)
using namespace std;
using std::chrono::high_resolution_clock;
using std::chrono::duration_cast;
using std::chrono::duration;
using std::chrono::milliseconds;
double test(string s, string p, size_t* pos_ptr) {
auto t1 = high_resolution_clock::now();
*pos_ptr = s.find(p);
auto t2 = high_resolution_clock::now();
duration ms_double = t2 - t1;
return ms_double.count();
}int main() {
string s, p;
size_t pos;
ifstream srcfile("source.in");
ifstream patfile("pattern.in");
srcfile >> s;
patfile >> p;
double tot_time = 0;
for (int i = 0;
i < LOOP_COUNT;
++i) {
tot_time += test(s, p, &pos);
}cout << "Loop count:" << LOOP_COUNT << endl;
cout << "Source string length:" << s.length() << endl;
cout << "Pattern string length: " << p.length() << endl;
cout << "Search result:" << pos << endl;
cout << "Time:" << tot_time / LOOP_COUNT << " ms" << endl;
return 0;
}
C++ -
test_strstr.cpp
#include
#include
#include
#include
#define LOOP_COUNT (1000)
using namespace std;
using std::chrono::high_resolution_clock;
using std::chrono::duration_cast;
using std::chrono::duration;
using std::chrono::milliseconds;
char s[1000005], p[1005], *pos=NULL;
double test(char* s, char* p, char** pos_ptr) {
auto t1 = high_resolution_clock::now();
*pos_ptr = strstr(s, p);
auto t2 = high_resolution_clock::now();
duration ms_double = t2 - t1;
return ms_double.count();
}int main() {
ifstream srcfile("source.in");
ifstream patfile("pattern.in");
srcfile >> s;
patfile >> p;
double tot_time = 0;
for (int i = 0;
i < LOOP_COUNT;
++i) {
tot_time += test(s, p, &pos);
}cout << "Loop count:" << LOOP_COUNT << endl;
cout << "Source string length:" << strlen(s) << endl;
cout << "Pattern string length: " << strlen(p) << endl;
cout << "Search result:" << pos - s << endl;
cout << "Time:" << tot_time / LOOP_COUNT << " ms" << endl;
return 0;
}
C++ -
test_kmp.cpp
#include
#include
#include
#include
#include
#define LOOP_COUNT (1000)
using namespace std;
using std::chrono::high_resolution_clock;
using std::chrono::duration_cast;
using std::chrono::duration;
using std::chrono::milliseconds;
int dp[1005];
int KMP(string s, string p) {
int m = s.length(), n = p.length();
if (n == 0) return 0;
if (m < n) return -1;
memset(dp, 0, sizeof(int) * (n+1));
for (int i = 1;
i < n;
++i) {
int j = dp[i+1];
while (j > 0 && p[j] != p[i]) j = dp[j];
if (j > 0 || p[j] == p[i]) dp[i+1] = j + 1;
}
for (int i = 0, j = 0;
i < m;
++i)
if (s[i] == p[j]) { if (++j == n) return i - j + 1;
}
else if (j > 0) {
j = dp[j];
--i;
}
return -1;
}double test(string s, string p, int* pos_ptr) {
auto t1 = high_resolution_clock::now();
*pos_ptr = KMP(s, p);
auto t2 = high_resolution_clock::now();
duration ms_double = t2 - t1;
return ms_double.count();
}int main() {
string s, p;
int pos;
ifstream srcfile("source.in");
ifstream patfile("pattern.in");
srcfile >> s;
patfile >> p;
double tot_time = 0;
for (int i = 0;
i < LOOP_COUNT;
++i) {
tot_time += test(s, p, &pos);
}cout << "Loop count:" << LOOP_COUNT << endl;
cout << "Source string length:" << s.length() << endl;
cout << "Pattern string length: " << p.length() << endl;
cout << "Search result:" << pos << endl;
cout << "Time:" << tot_time / LOOP_COUNT << " ms" << endl;
return 0;
}
结果 IPython 的
%timeit
魔法命令可以输出代码多次执行的平均时间和标准差,在此取平均时间。C++ 的代码对每个模式串固定运行 1,000 次后取平均时间。以下时间若无特别说明,均以微秒为单位,保留到整数位。
场景 | 模式串出现位置 | Python | C++ - test.cpp |
C++ - test_strstr.cpp |
C++ - test_kmp.cpp |
---|---|---|---|---|---|
场景 1 | 250,000 | 105 | 523 | 155 | 2564 |
场景 1 | 500,000 | 183 | 1053 | 274 | 3711 |
场景 1 | 750,000 | 291 | 1589 | 447 | 4900 |
场景 2 | 750,000 | 2630* | 618 | 353 | 3565 |
%timeit
输出的均值保留 3 位有效数字,由于此时间已超过 1 毫秒,微秒位被舍弃。此处仍以微秒作单位,数值记为“2630”。局限性 本次实测时使用的设备硬件上劣于算法竞赛中的标准配置机器,实测结果中的“绝对数值”参考性较低。
总结 根据上表中的结果,在给定环境和相关参数条件下,场景 1 中 Python 的运行时间大约为 C++ 中
string::find
的五分之一,与 std:strstr
接近;而在场景 2 中 Python 的运行时间明显增长,但 C++ 的前两种测试方法的运行时间与先前接近甚至更短。四次测试中,C++ 的用户实现的 KMP 算法运行时间均较长,长于同条件下 Python 的情况。Python 中的内置类型
str
的快速查找(.find()
)和计数(.count()
)算法基于 Boyer-Moore 算法和 Horspool 算法的混合,其中后者是前者的简化,而前者与 Knuth-Morris-Pratt 算法有关。有关 C++ 的
string::find
比 std::strstr
运行时间长的相关情况,参见 Bug 66414 - string::find ten times slower than strstr。值得关注的是:C++ 中自行实现的 KMP 算法的运行时间竟然远长于 C++ 标准库甚至 Python 中的算法。这也类似于常说的“自己设计汇编代码运行效率低于编译器”的情况。Stack Overflow 的一个问题 strstr faster than algorithms? 下有人回答如下:
Why do you thinkKMP 算法并非是所有线性复杂度算法中最快的。在不同的环境(软硬件、测试数据等)下,KMP 与其变种乃至其他线性复杂度算法,孰优孰劣都无法判断。编译器在设计时考虑到诸多可能的因素,尽可能使不同环境下都能有相对较优的策略来得到结果。因而,在保证结果正确的情况下,与其根据算法原理自行编写,不如直接使用标准库中提供的函数。strstr
should be slower than all the others? Do you know what algorithmstrstr
uses? I think it's quite likely thatstrstr
uses a fine-tuned, processor-specific, assembly-coded algorithm of theKMP
type or better. In which case you don't stand a chance of out-performing it inC
for such small benchmarks.
同时本次实测也在运行时间角度再次印证 Python 并不适合在算法竞赛中取得高成绩的说法。
参考
- https://stackoverflow.com/questions/22387586/measuring-execution-time-of-a-function-in-c
- https://www.cplusplus.com/reference/string/string/find/
- https://stackoverflow.com/questions/681649/how-is-string-find-implemented-in-cpython
- https://github.com/python/cpython/blob/main/Objects/stringlib/fastsearch.h#L5
- https://stackoverflow.com/questions/8869605/c-stringfind-complexity
- https://stackoverflow.com/questions/19506571/can-it-be-faster-to-find-the-minimum-periodic-string-inside-another-string-in-te
- https://gcc.gnu.org/onlinedocs/gcc-9.4.0/libstdc++/api/a17342_source.html
- https://opensource.apple.com/source/tcl/tcl-10/tcl/compat/strstr.c.auto.html
- https://gist.github.com/hsinewu/44a1ce38a1baf47893922e3f54807713
- https://stackoverflow.com/questions/11799956/performance-comparison-strstr-vs-stdstringfind
- https://stackoverflow.com/questions/7586990/strstr-faster-than-algorithms
- https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66414
- http://0x80.pl/notesen/2016-10-08-slow-std-string-find.html
推荐阅读
- 2022java蓝桥杯算法训练
- 小程序 登录授权页面
- Java面试题大全|【备战面试】面试题打卡——Mysql相关面试题总结
- LeetCode|【每日一题】——合并区间
- LeetCode|【每日一题】——单调递增的数字
- 数学建模|【美赛】2022美赛思路参考资料及其代码分享【全网最全】【美国大学生数学建模竞赛】【MCM/ICM】
- 凌波伟业(上班族怎样理财比较好(上班族理财攻略))
- react.js|react从入门到精通 1
- pytorch|【NLP】用MLP、CNN、RNN解决文本情感分类问题
- 【游戏测试】客户端性能 - 寻路采集热点图