【Apollo自动驾驶源码解读】车道线的感知和高精地图融合

模式选择 在modules/map/relative_map/conf/relative_map_config.pb.txt文件中对模式进行修改:

lane_source: OFFLINE_GENERATED

存在两种模式:OFFLINE_GENERATEDPERCPTION
当使用前者时 高精地图和感知进行融合
使用后者时 只是用感知生成相对地图
本文只讨论前者
函数入口 文件路径:modules/map/relative_map/navigation_lane.cc
函数名:bool NavigationLane::GeneratePath() 这个是重点分析的函数
下面进入这个函数
逻辑分析 在这里进行了模式检查:
if (config_.lane_source() == NavigationLaneConfig::OFFLINE_GENERATED && navigation_line_num > 0)

现在进入这个if中
for (int i = 0; i < navigation_line_num; ++i) { auto current_navi_path = std::make_shared(); auto *path = current_navi_path->mutable_path(); if (ConvertNavigationLineToPath(i, path)) { current_navi_path->set_path_priority( navigation_info_.navigation_path(i).path_priority()); navigation_path_list_.emplace_back( i, default_left_width_, default_right_width_, current_navi_path); } }

这里根据导航数据对 navigation_path_list_ 进行了填充 接下来马上进行判断:
if (navigation_path_list_.empty()) { generate_path_on_perception_func(); return true; }

如果没有数据 只能使用感知了
如果数据不为空 我们继续
这里对导航路线进行排序 还有设置当前车辆所在路径
其中 current_navi_path_tuple_ 这个变量记录了当前车所在的道路的索引 下面我们将这个变量称为当前车道
//根据车的方向 将导航路线从左到右排序 navigation_path_list_.sort( [](const NaviPathTuple &left, const NaviPathTuple &right) { double left_y = std::get<3>(left)->path().path_point(0).y(); double right_y = std::get<3>(right)->path().path_point(0).y(); return left_y > right_y; }); // Get which navigation path the vehicle is currently on. double min_d = std::numeric_limits::max(); for (const auto &navi_path_tuple : navigation_path_list_) { int current_line_index = std::get<0>(navi_path_tuple); ADEBUG << "Current navigation path index is: " << current_line_index; double current_d = std::numeric_limits::max(); auto item_iter = last_project_index_map_.find(current_line_index); if (item_iter != last_project_index_map_.end()) { current_d = item_iter->second.second; } if (current_d < min_d) { min_d = current_d; //设置当前车辆所在路径 current_navi_path_tuple_ = navi_path_tuple; } }

接下来 将当前车道进行融合 而不是将所有车道进行融合!
//融合感知和导航车道线 // Merge current navigation path where the vehicle is located with perceived // lane markers. auto *path = std::get<3>(current_navi_path_tuple_)->mutable_path(); MergeNavigationLineAndLaneMarker(std::get<0>(current_navi_path_tuple_), path);

进入融合函数
void NavigationLane::MergeNavigationLineAndLaneMarker(const int line_index, common::Path *const path)

进入之后直接进行判断
如果点的数量少于2 则首先生成导航的车道线
if (path->path_point_size() < 2) { path->Clear(); ConvertNavigationLineToPath(line_index, path); }

如果还是点的数量过少 那只能使用感知的了 并直接return 不用融合了
//如果路径点还是小于2 则根据感知生成导航车道线 // If the size of "path" points is still smaller than 2, just generate a // navigation path based on perceived lane markers. if (path->path_point_size() < 2) { path->Clear(); ConvertLaneMarkerToPath(perception_obstacles_.lane_marker(), path); return; }common::Path lane_marker_path; ConvertLaneMarkerToPath(perception_obstacles_.lane_marker(), &lane_marker_path); // If the size of lane marker path points is smaller than 2, merging is not // required. if (lane_marker_path.path_point_size() < 2) { return; }

下面进行融合
前提是只对当前车道进行车道线的融合 因为传入的就只是当前车道
融合原理大概是预先设置一个权重 目前感觉这个权重应该是不变的 这里存个疑
然后遍历导航中这条线每个点 在导航中找到这个点对应的点 根据权重进行融合
代码展示
int lane_marker_index = 0; double navigation_line_weight = 1.0 - config_.lane_marker_weight(); for (int i = 0; i < path->path_point_size(); ++i) { auto *point = path->mutable_path_point(i); double s = point->s(); //计算s距离之后的匹配点 并返回匹配点的索引 //lane_marker_path为感知发来的道路 auto lane_maker_point = GetPathPointByS(lane_marker_path, lane_marker_index, s, &lane_marker_index); // For the beginning and ending portions of a navigation path beyond the // perceived path, only the y-coordinates in the FLU coordinate system are // used for merging. const int marker_size = lane_marker_path.path_point_size(); if (lane_marker_index < 0 || lane_marker_index > (marker_size - 1)) { point->set_y(navigation_line_weight * point->y() + (1 - navigation_line_weight) * lane_maker_point.y()); lane_marker_index = 0; continue; } *point = common::util::GetWeightedAverageOfTwoPathPoints( *point, lane_maker_point, navigation_line_weight, 1 - navigation_line_weight); }

【【Apollo自动驾驶源码解读】车道线的感知和高精地图融合】然后回到之前的函数
下面就是各种设置宽度了
先提取了感知的道路宽度
遍历导航中所有的道路(这里不仅仅是处理当前道路)
如果遍历到了当前道路 就设置为感知到的道路宽度
代码展示
//设置导航道路的宽度 // Set the width for the navigation path which the vehicle is currently on. //注意感知车道线宽度是在这里储存的 double left_width = perceived_left_width_ > 0.0 ? perceived_left_width_ : default_left_width_; double right_width = perceived_right_width_ > 0.0 ? perceived_right_width_ : default_right_width_; if (!IsFloatEqual(left_width, default_left_width_) && !IsFloatEqual(right_width, default_right_width_)) { left_width = left_width > default_left_width_ ? left_width - min_d : left_width + min_d; right_width = right_width > default_right_width_ ? right_width - min_d : right_width + min_d; }ADEBUG << "The left width of current lane is: " << left_width << " and the right width of current lane is: " << right_width; std::get<1>(current_navi_path_tuple_) = left_width; std::get<2>(current_navi_path_tuple_) = right_width; auto curr_navi_path_iter = std::find_if( std::begin(navigation_path_list_), std::end(navigation_path_list_), [this](const NaviPathTuple &item) { return std::get<0>(item) == std::get<0>(current_navi_path_tuple_); }); if (curr_navi_path_iter != std::end(navigation_path_list_)) { std::get<1>(*curr_navi_path_iter) = left_width; std::get<2>(*curr_navi_path_iter) = right_width; } // Set the width between each navigation path and its adjacent path. // The reason for using average of multiple points is to prevent too much // interference from a singularity. // If current navigation path is the path which the vehicle is currently // on, the current lane width uses the perceived width. //设置每个导航路径与其相邻路径之间的宽度。 //使用多个点的平均值是为了防止奇点产生过多干扰。 //如果当前导航路径是车辆当前所在的路径,则当前车道宽度使用感知宽度。 int average_point_size = 5; for (auto iter = navigation_path_list_.begin(); iter != navigation_path_list_.end(); ++iter) { const auto &curr_path = std::get<3>(*iter)->path(); // Left neighbor auto prev_iter = std::prev(iter); if (prev_iter != navigation_path_list_.end()) { const auto &prev_path = std::get<3>(*prev_iter)->path(); average_point_size = std::min( average_point_size, std::min(curr_path.path_point_size(), prev_path.path_point_size())); double lateral_distance_sum = 0.0; for (int i = 0; i < average_point_size; ++i) { lateral_distance_sum += fabs(curr_path.path_point(i).y() - prev_path.path_point(i).y()); } double width = lateral_distance_sum / static_cast(average_point_size) / 2.0; width = common::math::Clamp(width, config_.min_lane_half_width(), config_.max_lane_half_width()); auto &curr_left_width = std::get<1>(*iter); auto &prev_right_width = std::get<2>(*prev_iter); if (std::get<0>(*iter) == std::get<0>(current_navi_path_tuple_)) { prev_right_width = 2.0 * width - curr_left_width; } else { curr_left_width = width; prev_right_width = width; } } // Right neighbor auto next_iter = std::next(iter); if (next_iter != navigation_path_list_.end()) { const auto &next_path = std::get<3>(*next_iter)->path(); average_point_size = std::min( average_point_size, std::min(curr_path.path_point_size(), next_path.path_point_size())); double lateral_distance_sum = 0.0; for (int i = 0; i < average_point_size; ++i) { lateral_distance_sum += fabs(curr_path.path_point(i).y() - next_path.path_point(i).y()); } double width = lateral_distance_sum / static_cast(average_point_size) / 2.0; width = common::math::Clamp(width, config_.min_lane_half_width(), config_.max_lane_half_width()); auto &curr_right_width = std::get<2>(*iter); auto &next_left_width = std::get<1>(*next_iter); if (std::get<0>(*iter) == std::get<0>(current_navi_path_tuple_)) { next_left_width = 2.0 * width - curr_right_width; } else { next_left_width = width; curr_right_width = width; } }

总结 如果权重是动态变化的还请大家评论纠正我
感觉apollo的车道线也就是高精地图和感知通过权重进行融合 没有很特别很精妙的算法 如有不对之处还请指教

    推荐阅读