本文首发于泊浮目的语雀:https://www.yuque.com/17sing
版本 | 日期 | 备注 |
---|---|---|
1.0 | 2022.3.16 | 文章首发 |
由于早期的流处理框架并不支持Exactly Once,导致流处理的数据并不精准。在这个基础上,一旦数据出现问题,则要导致大量的数据重放——这是因为事件往往是有时序要求的。因此,Lambda往往会通过流处理框架获取不是特别精准的结果,同时也会定时运行批处理程序,来获取更精准的结果——当更精准的结果出来时,我们就不需要前者了。
但这也带来的新的问题,所有的视图都需要流、批处理层各做一次,代码也要写两套,这带来了数据口径不同。可以说是在计算机资源以及人力资源上至少加了两倍的开销。
Kappa提出了将所有数据落到Kafka上,将存储模型与计算模型统一,但牺牲了时间——当数据量大时,回溯计算的压力巨大。
直到
The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing
发表后,流与批有望在编程模型上统一, 上述相关的问题得以缓解。1. Flink的实现 Flink比起其他的流处理框架,更优在两点:
- 遵循Dataflow模型,在编程模型上统一流批一体
- 改进Chandy-Lamport算法,以更低的代价保证精准一次的实现
在Flink框架上,目前主要解决了以下问题:
- IO模型:批处理会更加关注吞吐,因此是pull模型;而流处理更加关注实时性,因此是push模型。基于这个条件,Source算子需要同时支持两种模型来适应不同的计算模式。详细见 FLIP-27: Refactor Source Interface。
- 调度策略:批处理的算子并不需要同时在线,前一批的算子完成后再调度后一批算子即可——由于计算资源往往比存储资源昂贵,这是一个很不错的优化方案。当然在资源充足的情况下,追求性能也可以不考虑这种策略;但流处理的作业需要作业启动时就全部被调度。因此,StreamGraph需要同时支持这两种模式——即LazyScheduling和EagerScheduling。
- 批流的衔接:假如我们要分析近30天的数据,大多数情况下都是29天的离线数据加上最近一天的实时数据,如何保证衔接时数据不多也不少,其实是个麻烦的事情,在不少工程实践中会用一些比较hacks的方法。好在Flink1.4中引入了
Hybrid Source
来简化这件事—— FLIP-150: Introduce Hybrid Source。
上面描述的是在数据源要考虑的容错条件。在数据已经全部流入任务时,容错机制也需要重新考虑——尽量避免重复读取数据源以及上游任务的重算。因此社区引入了可插拔的Shuffle Service来提供Shuffle数据的持久用以支持细粒度的容错恢复——FLIP-31: Pluggable Shuffle Service。
2. 剩下的问题:数据来源不统一 上述流批衔接的前提是数据源被分为了流数据源和批数据源。那么口径便是不统一的,这会带来一些对接成本。
目前流行的方案会采用数据湖(如IceBerg、Hudi、DeltaLake)来做流批数据的统一,并且由于大多数据湖都支持
Time Travel
,离线数据的可重复读问题也顺带解决。另外,Pravega这种以流批一体存储为设计目标的软件可能也是解决方案之一。
3. 小结 在本文中,笔者和大家一起了解了流批一体的来源,以及Flink社区在流批一体中做出的努力。此外,我们也看到了有些问题并不是Flink这个框架可以解决的,需要整个大数据生态来一起演进,走向流批一体。
在文章的最后,感谢余空同学的交流与指导,我们一起写出了这篇文章。