opencv+python识别七段数码显示器的数字(数字识别)
目录
- 一、什么是七段数码显示器
- 二、创建opencv数字识别器
一、什么是七段数码显示器 七段LCD数码显示器有很多叫法:段码液晶屏、段式液晶屏、黑白笔段屏、段码LCD液晶屏、段式显示器、TN液晶屏、段码液晶显示器、段码屏幕、笔段式液晶屏、段码液晶显示屏、段式LCD、笔段式LCD等。
如下图,每个数字都由一个七段组件组成。
![opencv+python识别七段数码显示器的数字(数字识别)](https://img.it610.com/image/info11/41f631fda9c645fe95563cc420c12126.jpg)
文章图片
![opencv+python识别七段数码显示器的数字(数字识别)](https://img.it610.com/image/info11/392c9d8c83a74547bdd79d6199f012bb.jpg)
文章图片
七段显示器总共可以呈现 128 种可能的状态:
![opencv+python识别七段数码显示器的数字(数字识别)](https://img.it610.com/image/info11/057b090d505b4185aec6c0ec3c71aedd.jpg)
文章图片
我们要识别其中的0-9,如果用深度学习的方式有点小题大做,并且如果要进行应用还有很多前序工作需要进行,比如要确认识别什么设备的,怎么找到数字区域并进行分割等等。
![opencv+python识别七段数码显示器的数字(数字识别)](https://img.it610.com/image/info11/a414cc57cfe24a4a99961185fc30a27e.jpg)
文章图片
二、创建opencv数字识别器 我们这里进行使用空调恒温器进行识别,首先整理下流程。
1、定位恒温器上的 LCD屏幕。
2、提取 LCD的图像。
3、提取数字区域
4、识别数字。
我们创建名称为recognize_digits.py的文件,代码如下。仅思路供参考(因为代码中的一些参数只适合测试图片)
# import the necessary packagesfrom imutils.perspective import four_point_transformfrom imutils import contoursimport imutilsimport cv2# define the dictionary of digit segments so we can identify# each digit on the thermostat DIGITS_LOOKUP = { (1, 1, 1, 0, 1, 1, 1): 0, (0, 0, 1, 0, 0, 1, 0): 1, (1, 0, 1, 1, 1, 1, 0): 2, (1, 0, 1, 1, 0, 1, 1): 3, (0, 1, 1, 1, 0, 1, 0): 4, (1, 1, 0, 1, 0, 1, 1): 5, (1, 1, 0, 1, 1, 1, 1): 6, (1, 0, 1, 0, 0, 1, 0): 7, (1, 1, 1, 1, 1, 1, 1): 8, (1, 1, 1, 1, 0, 1, 1): 9} # load the example imageimage = cv2.imread("example.jpg")## pre-process the image by resizing it, converting it to# graycale, blurring it, and computing an edge mapimage = imutils.resize(image, height=500)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)blurred = cv2.GaussianBlur(gray, (5, 5), 0)edged = cv2.Canny(blurred, 50, 200, 255) # find contours in the edge map, then sort them by their# size in descending ordercnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)cnts = imutils.grab_contours(cnts)cnts = sorted(cnts, key=cv2.contourArea, reverse=True)displayCnt = None# loop over the contoursfor c in cnts: # approximate the contour peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.02 * peri, True) # if the contour has four vertices, then we have found # the thermostat display if len(approx) == 4:displayCnt = approxbreak # extract the thermostat display, apply a perspective transform# to itwarped = four_point_transform(gray, displayCnt.reshape(4, 2))output = four_point_transform(image, displayCnt.reshape(4, 2)) # threshold the warped image, then apply a series of morphological# operations to cleanup the thresholded imagethresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (1, 5))thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel) # find contours in the thresholded image, then initialize the# digit contours listscnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)cnts = imutils.grab_contours(cnts)digitCnts = []# loop over the digit area candidatesfor c in cnts: # compute the bounding box of the contour (x, y, w, h) = cv2.boundingRect(c) # if the contour is sufficiently large, it must be a digit if w >= 15 and (h >= 30 and h <= 40):digitCnts.append(c) # sort the contours from left-to-right, then initialize the# actual digits themselvesdigitCnts = contours.sort_contours(digitCnts, method="left-to-right")[0]digits = [] # loop over each of the digitsfor c in digitCnts: # extract the digit ROI (x, y, w, h) = cv2.boundingRect(c) roi = thresh[y:y + h, x:x + w] # compute the width and height of each of the 7 segments # we are going to examine (roiH, roiW) = roi.shape (dW, dH) = (int(roiW * 0.25), int(roiH * 0.15)) dHC = int(roiH * 0.05) # define the set of 7 segments segments = [((0, 0), (w, dH)), # top((0, 0), (dW, h // 2)), # top-left((w - dW, 0), (w, h // 2)), # top-right((0, (h // 2) - dHC) , (w, (h // 2) + dHC)), # center((0, h // 2), (dW, h)), # bottom-left((w - dW, h // 2), (w, h)), # bottom-right((0, h - dH), (w, h)) # bottom ] on = [0] * len(segments) # loop over the segments for (i, ((xA, yA), (xB, yB))) in enumerate(segments):# extract the segment ROI, count the total number of# thresholded pixels in the segment, and then compute# the area of the segmentsegROI = roi[yA:yB, xA:xB]total = cv2.countNonZero(segROI)area = (xB - xA) * (yB - yA)# if the total number of non-zero pixels is greater than# 50% of the area, mark the segment as "on"if total / float(area) > 0.5:on[i]= 1 # lookup the digit and draw it on the image digit = DIGITS_LOOKUP[tuple(on)] digits.append(digit) cv2.rectangle(output, (x, y), (x + w, y + h), (0, 255, 0), 1) cv2.putText(output, str(digit), (x - 10, y - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 255, 0), 2) # display the digitsprint(u"{}{}.{} \u00b0C".format(*digits))cv2.imshow("Input", image)cv2.imshow("Output", output)cv2.waitKey(0)
![opencv+python识别七段数码显示器的数字(数字识别)](https://img.it610.com/image/info11/093d88adc4704b2494e7f11008b2629e.jpg)
文章图片
原始图片
![opencv+python识别七段数码显示器的数字(数字识别)](https://img.it610.com/image/info11/b3e7b294e0504549b5c9391ef2612031.jpg)
文章图片
边缘检测
![opencv+python识别七段数码显示器的数字(数字识别)](https://img.it610.com/image/info11/aadf2a6ed37248fdb62d14b9c244c085.jpg)
文章图片
识别的结果图片
【opencv+python识别七段数码显示器的数字(数字识别)】到此这篇关于opencv+python识别七段数码显示器的数字(数字识别)的文章就介绍到这了,更多相关opencv数字识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
推荐阅读
- keras|OpenCV-Python实战(22)——使用Keras和Flask在Web端部署图像识别应用
- 图像处理|人工智能最新研究发展方向——OCR文字识别简述
- js|jsPlumb使用html2canvas无法识别svg
- 飞桨助力动车3C车载智能识别,为动车组运行保驾护航
- 指针式仪表读数识别|指针式仪表自动读数与识别(三)(圆形表盘定位)
- python|【python】笔势识别 - (含缩小规格,坐标点转换为矩阵,点图连成线图,图片输出处理)
- K210|【电赛开发】2021-F题数字识别-YOLOV2(含无脑训练教程
- 如何在有限算力下实现智能驾驶多任务高精度识别()
- 人脸识别|Yolo利息的王者(高效且更精确的目标检测框架(附源代码))
- 人脸识别|Yolo的巅峰框架(高效更精确的目标检测框架(附源代码))