1.延迟队列
download:
https://www.sisuoit.com/2811....
复制下哉ZY:https://www.sisuoit.com/2811.html
我们都知道,在
Java
中有类型众多的集合。那么你听说过 DelayQueue 吗?它是一个特殊类型的 Java 集合,允许我们根据元素的延迟时间对其进行排序。坦白来讲,这是一个非常有意思的类。尽管 DelayQueue 类是 Java 集合的成员之一,但是它位于 java.util.concurrent
包中。它实现了 BlockingQueue
接口。只有当元素的时间过期时,才能从队列中取出。要使用这个集合,首先,我们的类需要实现
Delayed
接口的 getDelay 方法。当然,它不一定必须是类,也可以是 Java Record。public record DelayedEvent(long startTime, String msg) implements Delayed {public long getDelay(TimeUnit unit) {
long diff = startTime - System.currentTimeMillis();
return unit.convert(diff, TimeUnit.MILLISECONDS);
}public int compareTo(Delayed o) {
return (int) (this.startTime - ((DelayedEvent) o).startTime);
}}
假设我们想要把元素延迟 10 秒钟,那么我们只需要在
DelayedEvent
类上将时间设置成当前时间加上 10 秒钟即可。final DelayQueue delayQueue = new DelayQueue<>();
final long timeFirst = System.currentTimeMillis() + 10000;
delayQueue.offer(new DelayedEvent(timeFirst, "1"));
log.info("Done");
log.info(delayQueue.take().msg());
对于上面的代码,我们能够看到什么输出呢?如下所示。
2.时间格式中支持显示一天中的时段 好吧,我承认这个 Java 特性对于你们中的大多数人来讲并没有太大的用处,但是,我对这个特性情有独钟……Java 8 对时间处理 API 做了很多的改进。从这个版本的 Java 开始,在大多数情况下,我们都不需要任何额外的库来处理时间了,比如 Joda Time。你可能想象不到,从 Java 16 开始,我们甚至可以使用标准的格式化器来表达一天中的时段,也就是“in the morning”或者“in the afternoon”。这是一个新的格式模式,叫做 B。
String s = DateTimeFormatter
.ofPattern("B")
.format(LocalDateTime.now());
System.out.println(s);
【Next.js+React+Node系统实战,搞定SSR服务器渲染一起无mi】如下是我运行的结果。当然,你的结果可能会因时间不同而有所差异。
好,稍等……现在,你可能会问这个格式为什么叫做 B。事实上,对于这种类型的格式来讲,它不是最直观的名字。但也许下面的表格能够解决我们所有的疑惑。它是 DateTimeFormatter 能够处理的模式字符和符号的片段。我猜想,B 是第一个空闲出来的字母。当然,我可能是错的。
3.StampedLock 我认为,Java Concurrent 是最有趣的 Java 包之一。同时,它也是一个不太为开发者所熟知的包,当开发人员主要使用 web 框架的时候更是如此。我们有多少人曾经在 Java 中使用过锁呢?锁是一种比 synchronized 块更灵活的线程同步机制。从 Java 8 开始,我们可以使用一种叫做 StampedLock 的新锁。StampedLock 是 ReadWriteLock 的一个替代方案。它允许对读操作进行乐观的锁定。而且,它的性能比 ReentrantReadWriteLock 更好。
假设我们有两个线程。第一个线程更新一个余额,而第二个线程则读取余额的当前值。为了更新余额,我们当然需要先读取其当前值。在这里,我们需要某种同步机制,假设第一个线程在同一时间内多次运行。第二个线程阐述了如何使用乐观锁来进行读取操作。
StampedLock lock = new StampedLock();
Balance b = new Balance(10000);
Runnable w = () -> {
long stamp = lock.writeLock();
b.setAmount(b.getAmount() + 1000);
System.out.println("Write: " + b.getAmount());
lock.unlockWrite(stamp);
};
Runnable r = () -> {
long stamp = lock.tryOptimisticRead();
if (!lock.validate(stamp)) {
stamp = lock.readLock();
try {
System.out.println("Read: " + b.getAmount());
} finally {
lock.unlockRead(stamp);
}
} else {
System.out.println("Optimistic read fails");
}
};
现在,我们同时运行这两个线程 50 次。它的结果应该是符合预期的,最终的余额是 60000。ExecutorService executor = Executors.newFixedThreadPool(10);
for (int i = 0;
i < 50;
i++) {
executor.submit(w);
executor.submit(r);
}
4.并发累加器 在 Java Concurrent 包中,有意思的并不仅仅有锁,另外一个很有意思的东西是并发累加器(
concurrent accumulator
)。我们也有并发的加法器(concurrent adder
),但它们的功能非常类似。LongAccumulator(我们也有 DoubleAccumulator)会使用一个提供给它的函数更新一个值。在很多场景下,它能让我们实现无锁的算法。当多个线程更新一个共同的值的时候,它通常会比 AtomicLong 更合适。我们看一下它是如何运行的。要创建它,我们需要在构造函数中设置两个参数。第一个参数是一个用于计算累加结果的函数。通常情况下,我们会使用 sum 方法。第二个参数表示累积器的初始值。
现在,让我们创建一个初始值为 10000 的
LongAccumulator
,然后从多个线程调用 accumulate() 方法。最后的结果是什么呢?如果你回想一下的话,我们做的事情和上一节完全一样,但这一次没有任何锁。LongAccumulator balance = new LongAccumulator(Long::sum, 10000L);
Runnable w = () -> balance.accumulate(1000L);
ExecutorService executor = Executors.newFixedThreadPool(50);
for (int i = 0;
i < 50;
i++) {
executor.submit(w);
}executor.shutdown();
if (executor.awaitTermination(1000L, TimeUnit.MILLISECONDS))
System.out.println("Balance: " + balance.get());
assert balance.get() == 60000L;