python可视化数据分析pyecharts初步尝试

目录

  • 整体说明
  • 例子
    • Boxplot
    • Bar
    • HeatMap
有一个web+flask项目需要可视化数据分析结果,检索后发现,pyecharts工具包非常对口。
Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
pyecharts中文文档有详细的说明,这里记录了个人更感兴趣的部分和对应的使用结果。

整体说明 pyecharts绘图的步骤可以简化成:
新建合适的图表对象,常见的有:
【python可视化数据分析pyecharts初步尝试】Pie: 饼图
Bar: 柱状图/条状图
Boxplot: 箱形图
HeatMap: 热力图
Line: 折线图/面积图
Scatter: 散点图
特别的,可以把多个图合在一起的 Overlap: 层叠多图
更详细的可以参考官方文档-图表类型
bar = Bar()

后续的操作都是利用这个对象的方法进行。
为图表对象增加数据,比如 增加x轴(.add_xaxis)、y轴数(.add_yaxis)
bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])

全局配置项:所有的内容都是通过.set_global_opts方法添加.set_global_opts()
bar.set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))

常用的有
TitleOpts:标题配置项
LegendOpts:图例配置项
VisualMapOpts:视觉映射配置项
AxisLineOpts: 坐标轴轴线配置项
AxisTickOpts: 坐标轴刻度配置项
AxisPointerOpts: 坐标轴指示器配置项
AxisOpts:坐标轴配置项
SingleAxisOpts:单轴配置项
详见官方文档配置项-全局配置项

例子
Boxplot
箱型图,一种比较简洁的统计值可视化方法
import randomfrom pyecharts import options as optsfrom pyecharts.charts import Boxplotimport numpy as np# 离线资源,有网络下可以不管from pyecharts.globals import CurrentConfigCurrentConfig.ONLINE_HOST = "http://127.0.0.1:8889/assets/"# 长度为1的str listx_label = ['随机数'] data = https://www.it610.com/article/np.random.randint(1000, size=100)# 这里data应为2维数组,长度和x_label相同的 list listdata = [data.tolist()]boxplot = Boxplot()boxplot.add_xaxis(x)# 调用自带的函数,计算箱型图需要的数据y_value = boxplot.prepare_data(y_value)boxplot.add_yaxis('', y_value)boxplot.set_global_opts(title_opts=opts.TitleOpts(title='box plot demo'))boxplot.render()


Bar
Bar比较简单,适合入门,设定一个x轴,一个y轴,就可以render了
# -*- coding: utf-8 -*-from pyecharts.charts import Barfrom pyecharts import options as optsimport numpy as np# 离线资源,有网络下可以不管from pyecharts.globals import CurrentConfigCurrentConfig.ONLINE_HOST = "http://127.0.0.1:8889/assets/"# 随机数组,0~255的数字,10000个x = np.random.randint(255, size=1000) # 统计直方图sum = np.zeros(256, dtype=np.int32)for cur_x in x:sum[cur_x] += 1# 绘图bar = Bar()# x轴 0~255x_label = [str(label) for label in list(range(256))]bar.add_xaxis(x_label)# y轴 频数, 这里的list一定要是标准int,不能为 np.int,所有 y_axis=list(sum)的话是不可以的bar.add_yaxis(series_name='频数', y_axis=sum.tolist())# 设置标题bar.set_global_opts(title_opts=opts.TitleOpts(title='直方图统计'))# 生成网页,会在当前目录下生成一个render.htmlbar.render()


HeatMap
热力图
这篇已经叙述的很好了,以下为引用
注,引文中的代码是用链式写的,官方是这么推荐的。
import randomfrom pyecharts import options as optsfrom pyecharts.charts import HeatMapfrom pyecharts.faker import Faker# 离线资源,有网络下可以不管from pyecharts.globals import CurrentConfigCurrentConfig.ONLINE_HOST = "http://127.0.0.1:8889/assets/"value = https://www.it610.com/article/[[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]heatmap = (HeatMap().add_xaxis(Faker.clock).add_yaxis("",Faker.week,value,label_opts=opts.LabelOpts(is_show=True, position="inside"),).set_global_opts(title_opts=opts.TitleOpts(title="基础热力图"),visualmap_opts=opts.VisualMapOpts(),))heatmap.render()

以上就是python可视化数据分析pyecharts初步尝试的详细内容,更多关于python可视化数据分析pyecharts的资料请关注脚本之家其它相关文章!

    推荐阅读