来自:blog.csdn.net/LookForDream_/article/details/109355335
前言
系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结。
这篇文章就是给各位看官提供一个生成分布式唯一全局id生成方案的思路,希望能帮助到大家。
不足之处,请多多指教!!
问题
为什么需要分布式全局唯一ID以及分布式ID的业务需求
在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识,如在美团点评的金融、支付、餐饮、酒店
猫眼电影等产品的系统中数据逐渐增长,对数据库分库分表后需要有一个唯一ID来标识一条数据或信息;
特别Ian的订单、骑手、优惠券都需要有唯一ID做标识
此时一个能够生成全局唯一ID的系统是非常必要的
文章图片
ID生成规则部分硬性要求
- 全局唯一
- 趋势递增
-
- 在MySQL的InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用Btree的数据结构来存储索引,在主键的选择上面我们应该尽量使用有序的主键保证写入性能
- 单调递增
-
- 保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求
- 信息安全
-
- 如果ID是连续,恶意用户的爬取工作就非常容易做了,直接按照顺序下载指定URL即可,如果是订单号就危险了,竞争对手可以直接知道我们一天的单量,所以在一些应用场景下,需要ID无规则不规则,让竞争对手不好猜
- 含时间戳
-
- 一样能够快速在开发中了解这个分布式ID什么时候生成的
- 高可用
-
- 发布一个获取分布式ID请求,服务器就要保证99.999%的情况下给我创建一个唯一分布式ID
- 低延迟
-
- 发一个获取分布式ID的请求,服务器就要快,极速
- 高QPS
-
- 例如并发一口气10万个创建分布式ID请求同时杀过来,服务器要顶得住且一下子成功创建10万个分布式ID
UUID.randomUUID()
, UUID的标准型包含32个16进制数字,以连字号分为五段,形式为 8-4-4-4-12的36个字符,性能非常高,本地生成,没有网络消耗。存在问题 入数据库性能差,因为UUID是无序的
无序,无法预测他的生成顺序,不能生成递增有序的数字
首先分布式id一般都会作为逐渐,但是按照mysql官方推荐主键尽量越短越好,UUID每一个都很长,所以不是很推荐。
主键,ID作为主键时,在特定的环境下会存在一些问题
比如做DB主键的场景下,UUID就非常不适用MySQL官方有明确的说明
索引,B+树索引的分裂
既然分布式ID是主键,然后主键是包含索引的,而mysql的索引是通过B+树来实现的,每一次新的UUID数据的插入,为了查询的优化,都会对索引底层的B+树进行修改,因为UUID数据是无序的,所以每一次UUID数据的插入都会对主键的B+树进行很大的修改,这一点很不好,插入完全无序,不但会导致一些中间节点产生分裂,也会白白创造出很多不饱和的节点,这样大大降低了数据库插入的性能。
UUID只能保证全局唯一性,不满足后面的趋势递增,单调递增
数据库自增主键 单机 在分布式里面,数据库的自增ID机制的主要原理是:数据库自增ID和mysql数据库的
replace into
实现的,这里的replace into
跟insert功能 类似,不同点在于:replace into
首先尝试插入数据列表中,如果发现表中已经有此行数据(根据主键或唯一索引判断)则先删除,在插入,否则直接插入新数据。REPLACE INTO
的含义是插入一条记录,如果表中唯一索引的值遇到冲突,则替换老数据文章图片
REPLACE into t_test(stub) values('b');
select LAST_INSERT_ID();
我们每次插入的时候,发现都会把原来的数据给替换,并且ID也会增加
这就满足了
- 递增性
- 单调性
- 唯一性
集群分布式集群 那数据库自增ID机制适合做分布式ID吗?答案是不太适合
系统水平扩展比较困难,比如定义好步长和机器台数之后,如果要添加机器该怎么办,假设现在有一台机器发号是:1,2,3,4,5,(步长是1),这个时候需要扩容机器一台,可以这样做:把第二胎机器的初始值设置得比第一台超过很多,貌似还好,但是假设线上如果有100台机器,这个时候扩容要怎么做,简直是噩梦,所以系统水平扩展方案复杂难以实现。
数据库压力还是很大,每次获取ID都得读写一次数据库,非常影响性能,不符合分布式ID里面的延迟低和高QPS的规则(在高并发下,如果都去数据库里面获取ID,那是非常影响性能的)
基于Redis生成全局ID策略 单机版 因为Redis是单线程,天生保证原子性,可以使用原子操作INCR和INCRBY来实现
【京东一面(高并发下,如何保证分布式唯一全局 ID 生成())】INCRBY:设置增长步长
集群分布式 注意:在Redis集群情况下,同样和MySQL一样需要设置不同的增长步长,同时key一定要设置有效期,可以使用Redis集群来获取更高的吞吐量。
假设一个集群中有5台Redis,可以初始化每台Redis的值分别是 1,2,3,4,5 , 然后设置步长都是5
各个Redis生成的ID为:
A:1 6 11 16 21
B:2 7 12 17 22
C:3 8 13 18 23
D:4 9 14 19 24
E:5 10 15 20 25
但是存在的问题是,就是Redis集群的维护和保养比较麻烦,配置麻烦。因为要设置单点故障,哨兵值守
但是主要是的问题就是,为了一个ID,却需要引入整个Redis集群,有种杀鸡焉用牛刀的感觉
雪花算法 是什么 Twitter的分布式自增ID算法,Snowflake
最初Twitter把存储系统从MySQL迁移到Cassandra(由Facebook开发一套开源分布式NoSQL数据库系统)因为Cassandra没有顺序ID生成机制,所有开发了这样一套全局唯一ID生成服务。
Twitter的分布式雪花算法SnowFlake,经测试SnowFlake每秒可以产生26万个自增可排序的ID
- twitter的SnowFlake生成ID能够按照时间有序生成
- SnowFlake算法生成ID的结果是一个64Bit大小的整数,为一个Long型(转换成字符串后长度最多19)
- 分布式系统内不会产生ID碰撞(由datacenter 和 workerID做区分)并且效率较高
- 在分布式环境下,必须全局唯一性
- 一般都需要单调递增,因为一般唯一ID都会存在数据库,而InnoDB的特性就是将内容存储在主键索引上的叶子节点,而且是从左往右递增的,所有考虑到数据库性能,一般生成ID也最好是单调递增的。为了防止ID冲突可以使用36位UUID,但是UUID有一些缺点,首先是它相对比较长,并且另外UUID一般是无序的
- 可能还会需要无规则,因为如果使用唯一ID作为订单号这种,为了不让别人知道一天的订单量多少,就需要这种规则
文章图片
在Java中64bit的证书是long类型,所以在SnowFlake算法生成的ID就是long类存储的
第一部分 二进制中最高位是符号位,1表示负数,0表示正数。生成的ID一般都是用整数,所以最高位固定为0。
第二部分 第二部分是41bit时间戳位,用来记录时间戳,毫秒级
41位可以表示 2^41 -1 个数字
如果只用来表示正整数,可以表示的范围是:0 - 2^41 -1,减1是因为可以表示的数值范围是从0开始计算的,而不是从1。
也就是说41位可以表示 2^41 - 1 毫秒的值,转换成单位年则是 69.73年
第三部分 第三部分为工作机器ID,10Bit用来记录工作机器ID
可以部署在2^10 = 1024个节点,包括5位 datacenterId(数据中心,机房) 和 5位 workerID(机器码)
5位可以表示的最大正整数是 2 ^ 5 = 31个数字,来表示不同的数据中心 和 机器码
第四部分 12位bit可以用来表示的正整数是 2^12 = 4095,即可以用0 1 2 … 4094 来表示同一个机器同一个时间戳内产生的4095个ID序号。
SnowFlake可以保证 所有生成的ID按时间趋势递增
整个分布式系统内不会产生重复ID,因为有datacenterId 和 workerId来做区分
实现 雪花算法是由scala算法编写的,有人使用java实现,github地址
https://github.com/beyondfeng...
/**
* twitter的snowflake算法 -- java实现
*
* @author beyond
*/
public class SnowFlake {/**
* 起始的时间戳
*/
private final static long START_STMP = 1480166465631L;
/**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12;
//序列号占用的位数
private final static long MACHINE_BIT = 5;
//机器标识占用的位数
private final static long DATACENTER_BIT = 5;
//数据中心占用的位数/**
* 每一部分的最大值
*/
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
private long datacenterId;
//数据中心
private long machineId;
//机器标识
private long sequence = 0L;
//序列号
private long lastStmp = -1L;
//上一次时间戳public SnowFlake(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
}/**
* 产生下一个ID
*
* @return
*/
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards.Refusing to generate id");
}if (currStmp == lastStmp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}lastStmp = currStmp;
return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
| datacenterId << DATACENTER_LEFT//数据中心部分
| machineId << MACHINE_LEFT//机器标识部分
| sequence;
//序列号部分
}private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
}private long getNewstmp() {
return System.currentTimeMillis();
}public static void main(String[] args) {
SnowFlake snowFlake = new SnowFlake(2, 3);
for (int i = 0;
i < (1 << 12);
i++) {
System.out.println(snowFlake.nextId());
}}
}
工程落地经验 hutools工具包
地址:https://github.com/looly/hutoolSpringBoot整合雪花算法 引入hutool工具类
cn.hutool
hutool-all
5.3.1
整合
/**
* 雪花算法
*
* @author: 陌溪
*/
public class SnowFlakeDemo {
private long workerId = 0;
private long datacenterId = 1;
private Snowflake snowFlake = IdUtil.createSnowflake(workerId, datacenterId);
@PostConstruct
public void init() {
try {
// 将网络ip转换成long
workerId = NetUtil.ipv4ToLong(NetUtil.getLocalhostStr());
} catch (Exception e) {
e.printStackTrace();
}
}/**
* 获取雪花ID
* @return
*/
public synchronized long snowflakeId() {
return this.snowFlake.nextId();
}public synchronized long snowflakeId(long workerId, long datacenterId) {
Snowflake snowflake = IdUtil.createSnowflake(workerId, datacenterId);
return snowflake.nextId();
}public static void main(String[] args) {
SnowFlakeDemo snowFlakeDemo = new SnowFlakeDemo();
for (int i = 0;
i < 20;
i++) {
new Thread(() -> {
System.out.println(snowFlakeDemo.snowflakeId());
}, String.valueOf(i)).start();
}
}
}
得到结果
1251350711346790400
1251350711346790402
1251350711346790401
1251350711346790403
1251350711346790405
1251350711346790404
1251350711346790406
1251350711346790407
1251350711350984704
1251350711350984706
1251350711350984705
1251350711350984707
1251350711350984708
1251350711350984709
1251350711350984710
1251350711350984711
1251350711350984712
1251350711355179008
1251350711355179009
1251350711355179010
优缺点 优点
- 毫秒数在高维,自增序列在低位,整个ID都是趋势递增的
- 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的
- 可以根据自身业务特性分配bit位,非常灵活
- 依赖机器时钟,如果机器时钟回拨,会导致重复ID生成
- 在单机上是递增的,但由于涉及到分布式环境,每台机器上的时钟不可能完全同步,有时候会出现不是全局递增的情况,此缺点可以认为无所谓,一般分布式ID只要求趋势递增,并不会严格要求递增,90%的需求只要求趋势递增。
- 为了解决时钟回拨问题,导致ID重复,后面有人专门提出了解决的方案
-
- 百度开源的分布式唯一ID生成器 UidGenerator
- Leaf - 美团点评分布式ID生成系统
1.1,000+ 道 Java面试题及答案整理(2022最新版)
2.劲爆!Java 协程要来了。。。
3.Spring Boot 2.x 教程,太全了!
4.别再写满屏的爆爆爆炸类了,试试装饰器模式,这才是优雅的方式!!
5.《Java开发手册(嵩山版)》最新发布,速速下载!
觉得不错,别忘了随手点赞+转发哦!
推荐阅读
- C语言与C++编程|C++ 并发编程(C++11 到 C++17 )
- Java常用实现八种排序算法与代码实现
- 人工智能|2021年净利润同比增长75.9% 孟晚舟称华为已穿过劫难黑障区
- 其他|华为发布21年财报 孟晚舟出席
- java|那个每天半夜发加班朋友圈的程序员,你给我站住!
- 面试|Bug改到怀疑人生…… | 每日趣闻
- spring|不懂SpringApplication生命周期事件(那就等于不会Spring Boot嘛)
- 搬砖工逆袭Java架构师|从《Java核心技术》纵览Java全貌
- Java100例教程|java面向对象简介