点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
文章图片
了解图像分割
当我们在做一个图像分类任务时,首先我们会想从图像中捕获感兴趣的区域,然后再将其输入到模型中。让我们尝试一种称为基于聚类的图像分割技术,它会帮助我们在一定程度上提高模型性能,让我们看看它是什么以及一些进行聚类分割的示例代码。
什么是图像分割?
想象一下我们要过马路,过马路之前我们会做什么?
首先,我们会看道路两旁,以确定接近的车辆等环境对象,然后我们会对接近的车辆的速度做出一些快速的估计,并决定何时以及如何过马路。所有这些都发生在很短的时间内,非常很的神奇。
- 我们的大脑捕捉道路两侧的图像
- 它检测道路上的车辆和其他物体==物体检测
- 它还确定了它检测到的每个对象的形状 == 图像分割
让我们进一步了解,假设我们有我们的图像分类模型,它能够以 95% 上的准确率对苹果和橙子进行分类。当我们输入一幅同时包含苹果和橙子的图像时,预测精度会下降。随着图像中对象数量的增加,分类模型的性能会下降,这就是目标定位发挥作用的地方。
在我们检测图像中的对象并对其进行分类之前,模型需要了解图像中的内容,这就是图像分割的帮助所在。它为图像中的对象创建一个像素级的蒙版,这有助于模型更精细地理解对象的形状及其在图像中的位置。
文章图片
目标检测 VS 图像分割
分割的类型有哪些?
图像分割大致分为两大类。
- 【计算机视觉|基于聚类的图像分割-Python】语义分割
- 实例分割
文章图片
检测到的对象 — 语义段 — 实例段
在第一张图片中,我们可以看到检测到的对象都是男性。在语义分割中,我们认为所有这些像素都属于一类,因此我们用一种颜色表示它们。另一方面,在实例分割中,这些像素属于同一类,但我们用不同的颜色表示同一类的不同实例。
根据我们使用的分割方法,分割可以分为许多类别。
- 基于区域的分割
- 基于边缘检测的分割
- 基于聚类的分割
- 基于CNN的分割等。
什么是基聚类的分割?
聚类算法用于将彼此更相似的数据点从其他组数据点更紧密地分组。
现在我们想象一幅包含苹果和橙子的图像。苹果中的大部分像素点应该是红色/绿色,这与橙色的像素值不同。如果我们能把这些点聚在一起,我们就能正确地区分每个物体,这就是基于聚类的分割的工作原理。现在让我们看一些代码示例。
from skimage.io import imread
from skimage.color import rgb2gray
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from scipy import ndimage
# Scaling the image pixels values within 0-1
img = imread('./apple-orange.jpg') / 255
plt.imshow(img)
plt.title('Original')
plt.show()
文章图片
由于肉眼可见,图像中有五个色段
- 苹果的绿色部分
- 橙子的橙色部分
- 苹果和橙子底部的灰色阴影
- 苹果顶部和右侧部分的亮黄色部分
- 白色背景
# For clustering the image using k-means, we first need to convert it into a 2-dimensional array
image_2D = img.reshape(img.shape[0]*img.shape[1], img.shape[2])
# Use KMeans clustering algorithm from sklearn.cluster to cluster pixels in image
from sklearn.cluster import KMeans
# tweak the cluster size and see what happens to the Output
kmeans = KMeans(n_clusters=5, random_state=0).fit(image_2D)
clustered = kmeans.cluster_centers_[kmeans.labels_]
# Reshape back the image from 2D to 3D image
clustered_3D = clustered.reshape(img.shape[0], img.shape[1], img.shape[2])
plt.imshow(clustered_3D)
plt.title('Clustered Image')
plt.show()
文章图片
效果非常好,我们能够将五个部分组合在一起,这就是聚类分割的工作原理。目前有许多先进的技术,例如 Mask R-CNN,可以进行更细粒度的分割。
Github代码连接:
https://github.com/Mathanraj-Sharma/sample-for-medium-article/blob/master/cluster-based-segmentation-skimage/cluster-based-segmentation.ipynb
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
文章图片
文章图片
推荐阅读
- opencv|python-opencv给图像添加高斯噪声
- Python 懂车帝全车系销量排行榜
- python 一行命令开启网络间的文件共享
- pycharm 添加已存在的 pipenv 虚拟环境解释器()
- CNC扫条码下载程序机床扫码传输程序NC文件扫码下载设备远程传输程序DNC联网CNC无线传输
- java|争分夺秒!这所211大学调剂系统只开通14小时!
- 《Linux运维实战总结》|《Linux运维实战(shell脚本解析yaml文件变量》)
- 深度学习|【李宏毅机器学习】Convolutiona Neural Network 卷积神经网络(p17) 学习笔记
- 机器学习|【学习笔记】李宏毅2021春机器学习课程第三节(卷积神经网络(CNN))