- 这里以stm32F103RBT6为例
void TIM2_PWM_Init(void)
{
TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure;
TIM_OCInitTypeDefTIM_OCInitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
uint16_t PrescalerValue = https://www.it610.com/article/0;
uint16_t CCR1_Val = 500;
/* TIM2 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
/* GPIOAclock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
GPIO_InitStructure.GPIO_Pin =GPIO_Pin_1|GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Compute the prescaler value */
PrescalerValue = (uint16_t) (SystemCoreClock / 1000000) - 1;
/* Time base configuration */
TIM_TimeBaseStructure.TIM_Period = 1000 - 1;
TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
/* PWM1 Mode configuration: Channel2 */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2Init(TIM2, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable);
/* PWM1 Mode configuration: Channel3 */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC3Init(TIM2, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM2, ENABLE);
/* TIM2 enable counter */
TIM_Cmd(TIM2, ENABLE);
}TIM_SetAutoreload(TIM2,1000 - 1);
//设置TIM2的重载值,PWM频率1kHZ
TIM_SetCompare2(TIM2,500);
//设置占空比,50%
TIM_SetCompare3(TIM2,100);
//设置占空比,10%
单个定时器输出多路不同频率不同占空比的方波
__IO uint16_t TIM2_CCR2_Val = 8192;
__IO uint16_t TIM2_CCR3_Val = 4096;
void TIM2_PWM_OCToggle(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure;
TIM_OCInitTypeDefTIM_OCInitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
uint16_t PrescalerValue = https://www.it610.com/article/0;
/* System Clocks Configuration */
/* TIM2 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
/* GPIOA clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB|
RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE);
/* NVIC Configuration */
/* Enable the TIM2 global Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* GPIO Configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* ---------------------------------------------------------------------------
TIM2 Configuration: Output Compare Toggle Mode:
TIM2CLK = SystemCoreClock / 2,
The objective is to get TIM2 counter clock at 12 MHz:
- Prescaler = (TIM2CLK / TIM2 counter clock) - 1
CC1 update rate = TIM2 counter clock / CCR1_Val = 366.2 Hz
CC2 update rate = TIM2 counter clock / CCR2_Val = 732.4 Hz
CC3 update rate = TIM2 counter clock / CCR3_Val = 1464.8 Hz
CC4 update rate = TIM2 counter clock / CCR4_Val = 2929.6 Hz
----------------------------------------------------------------------------*/
/* Compute the prescaler value */
PrescalerValue = (uint16_t) (SystemCoreClock / 24000000) - 1;
/* Time base configuration */
TIM_TimeBaseStructure.TIM_Period = 65535;
TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
/* Output Compare Toggle Mode configuration: Channel2 */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = TIM2_CCR2_Val;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OC2Init(TIM2, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);
/* Output Compare Toggle Mode configuration: Channel3 */
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = TIM2_CCR3_Val;
TIM_OC3Init(TIM2, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);
/* TIM enable counter */
TIM_Cmd(TIM2, ENABLE);
/* TIM IT enable */
TIM_ITConfig(TIM2, TIM_IT_CC2 | TIM_IT_CC3 , ENABLE);
}uint16_t TIM2_capture = 0;
_Bool TIM2_CH2_flag=0, TIM2_CH3_flag=0;
float TIM2_CH2_duty=0.3, TIM2_CH3_duty=0.7;
void TIM2_IRQHandler(void)
{
/* TIM2_CH2 toggling with frequency = 732.4 Hz */
if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET)
{
TIM_ClearITPendingBit(TIM2, TIM_IT_CC2 );
TIM2_capture = TIM_GetCapture2(TIM2);
if(TIM2_CH2_flag==1)
{
TIM_SetCompare2(TIM2, TIM2_capture + (u16)(TIM2_CCR2_Val*TIM2_CH2_duty));
TIM2_CH2_flag=0;
}
else
{
TIM_SetCompare2(TIM2, TIM2_capture + (u16)(TIM2_CCR2_Val*(1-TIM2_CH2_duty)));
TIM2_CH2_flag=1;
}
}/* TIM2_CH3 toggling with frequency = 1464.8 Hz */
if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET)
{
TIM_ClearITPendingBit(TIM2, TIM_IT_CC3);
TIM2_capture = TIM_GetCapture3(TIM2);
if(TIM2_CH3_flag==1)
{
TIM_SetCompare3(TIM2, TIM2_capture + (u16)(TIM2_CCR3_Val*TIM2_CH3_duty));
TIM2_CH3_flag=0;
}
else
{
TIM_SetCompare3(TIM2, TIM2_capture + (u16)(TIM2_CCR3_Val*(1-TIM2_CH3_duty)));
TIM2_CH3_flag=1;
}
}
}
单个定时器捕获多路不同频率的方波
void TIM3_Input_Mode_Init(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
TIM_ICInitTypeDefTIM_ICInitStructure;
/* TIM3 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
/* GPIOA and GPIOB clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
/* Enable the TIM3 global Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* TIM3 channel 2 pin (PA.07) configuration */
GPIO_InitStructure.GPIO_Pin =GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* TIM3 configuration: Input Capture mode ---------------------
The external signal is connected to TIM3 CH2 pin (PA.07)
The Rising edge is used as active edge,
The TIM3 CCR2 is used to compute the frequency value
------------------------------------------------------------ */ TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInit(TIM3, &TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM_ICInit(TIM3, &TIM_ICInitStructure);
/* TIM enable counter */
TIM_Cmd(TIM3, ENABLE);
/* Enable the CC1 / CC2 Interrupt Request */
TIM_ITConfig(TIM3,TIM_IT_CC1|TIM_IT_CC2, ENABLE);
}__IO uint16_t TIM3_CH2_ReadValue1 = 0, TIM3_CH2_ReadValue2 = 0;
__IO uint16_t TIM3_CH2_CaptureNumber = 0;
__IO uint32_t TIM3_CH2_Capture = 0;
__IO uint32_t TIM3_CH2_Freq = 0;
__IO uint16_t TIM3_CH1_ReadValue1 = 0, TIM3_CH1_ReadValue2 = 0;
__IO uint16_t TIM3_CH1_CaptureNumber = 0;
__IO uint32_t TIM3_CH1_Capture = 0;
__IO uint32_t TIM3_CH1_Freq = 0;
void TIM3_IRQHandler(void)
{
if(TIM_GetITStatus(TIM3, TIM_IT_CC2) == SET)
{
/* Clear TIM3 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM3, TIM_IT_CC2);
if(TIM3_CH2_CaptureNumber == 0)
{
/* Get the Input Capture value */
TIM3_CH2_ReadValue1 = TIM_GetCapture2(TIM3);
TIM3_CH2_CaptureNumber = 1;
}
else if(TIM3_CH2_CaptureNumber == 1)
{
/* Get the Input Capture value */
TIM3_CH2_ReadValue2 = TIM_GetCapture2(TIM3);
/* Capture computation */
if (TIM3_CH2_ReadValue2 > TIM3_CH2_ReadValue1)
{
TIM3_CH2_Capture = (TIM3_CH2_ReadValue2 - TIM3_CH2_ReadValue1);
}
else
{
TIM3_CH2_Capture = ((0xFFFF - TIM3_CH2_ReadValue1) + TIM3_CH2_ReadValue2);
}
/* Frequency computation */
TIM3_CH2_Freq = (uint32_t) SystemCoreClock / TIM3_CH2_Capture;
TIM3_CH2_CaptureNumber = 0;
}
}if(TIM_GetITStatus(TIM3, TIM_IT_CC1) == SET)
{
/* Clear TIM3 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM3, TIM_IT_CC1);
if(TIM3_CH1_CaptureNumber == 0)
{
/* Get the Input Capture value */
TIM3_CH1_ReadValue1 = TIM_GetCapture1(TIM3);
TIM3_CH1_CaptureNumber = 1;
}
else if(TIM3_CH1_CaptureNumber == 1)
{
/* Get the Input Capture value */
TIM3_CH1_ReadValue2 = TIM_GetCapture1(TIM3);
/* Capture computation */
if (TIM3_CH1_ReadValue2 > TIM3_CH1_ReadValue1)
{
TIM3_CH1_Capture = (TIM3_CH1_ReadValue2 - TIM3_CH1_ReadValue1);
}
else
{
TIM3_CH1_Capture = ((0xFFFF - TIM3_CH1_ReadValue1) + TIM3_CH1_ReadValue2);
}
/* Frequency computation */
TIM3_CH1_Freq = (uint32_t) SystemCoreClock / TIM3_CH1_Capture;
TIM3_CH1_CaptureNumber = 0;
}
}
}
单个定时器捕获多路方波的频率和占空比
void TIM3_Input_Mode_Init(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
TIM_ICInitTypeDefTIM_ICInitStructure;
/* TIM3 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
/* GPIOA and GPIOB clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
/* Enable the TIM3 global Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* TIM3 channel 2 pin (PA.07) configuration */
GPIO_InitStructure.GPIO_Pin =GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* TIM3 configuration: Input Capture mode ---------------------
The external signal is connected to TIM3 CH2 pin (PA.07)
The Rising edge is used as active edge,
The TIM3 CCR2 is used to compute the frequency value
------------------------------------------------------------ */ TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInit(TIM3, &TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM_ICInit(TIM3, &TIM_ICInitStructure);
/* TIM enable counter */
TIM_Cmd(TIM3, ENABLE);
/* Enable the CC1 / CC2 Interrupt Request */
TIM_ITConfig(TIM3,TIM_IT_CC1|TIM_IT_CC2, ENABLE);
}__IO uint16_t TIM3_CH2_ReadValue1 = 0, TIM3_CH2_ReadValue2 = 0;
__IO uint16_t TIM3_CH2_CaptureNumber = 0;
__IO uint32_t TIM3_CH2_Freq = 0;
__IO uint16_t TIM3_CH1_ReadValue1 = 0, TIM3_CH1_ReadValue2 = 0;
__IO uint16_t TIM3_CH1_CaptureNumber = 0;
__IO uint32_t TIM3_CH1_Freq = 0;
u8 TIM3_CH1_Duty, TIM3_CH2_Duty;
u8 capture_flag = 1;
void TIM3_IRQHandler(void)
{
if(TIM_GetITStatus(TIM3, TIM_IT_CC2) == SET)
{
/* Clear TIM3 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM3, TIM_IT_CC2);
if(capture_flag == 2)
{
if(TIM3_CH2_CaptureNumber == 0)
{
TIM_SetCounter(TIM3, 0);
TIM_OC2PolarityConfig(TIM3,TIM_ICPolarity_Falling);
TIM3_CH2_CaptureNumber = 1;
}
else if (TIM3_CH2_CaptureNumber == 1)
{
/* Get the Input Capture value */
TIM3_CH2_ReadValue1 = TIM_GetCounter(TIM3);
TIM_OC2PolarityConfig(TIM3,TIM_ICPolarity_Rising);
TIM3_CH2_CaptureNumber = 2;
}
else if(TIM3_CH2_CaptureNumber == 2)
{
/* Get the Input Capture value */
TIM3_CH2_ReadValue2 = TIM_GetCounter(TIM3);
/* Frequency computation */
TIM3_CH2_Freq = (uint32_t) SystemCoreClock / TIM3_CH2_ReadValue2;
TIM3_CH2_Duty = TIM3_CH2_ReadValue1 * 100 / TIM3_CH2_ReadValue2;
TIM3_CH2_CaptureNumber = 0;
}
}
}if(TIM_GetITStatus(TIM3, TIM_IT_CC1) == SET)
{
/* Clear TIM3 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM3, TIM_IT_CC1);
if(capture_flag == 1)
{
if(TIM3_CH1_CaptureNumber == 0)
{
TIM_SetCounter(TIM3, 0);
TIM_OC1PolarityConfig(TIM3,TIM_ICPolarity_Falling);
TIM3_CH1_CaptureNumber = 1;
}
else if (TIM3_CH1_CaptureNumber == 1)
{
/* Get the Input Capture value */
TIM3_CH1_ReadValue1 = TIM_GetCounter(TIM3);
TIM_OC1PolarityConfig(TIM3,TIM_ICPolarity_Rising);
TIM3_CH1_CaptureNumber = 2;
}
else if(TIM3_CH1_CaptureNumber == 2)
{
/* Get the Input Capture value */
TIM3_CH1_ReadValue2 = TIM_GetCounter(TIM3);
/* Frequency computation */
TIM3_CH1_Freq = (uint32_t) SystemCoreClock / TIM3_CH1_ReadValue2;
TIM3_CH1_Duty = TIM3_CH1_ReadValue1 * 100 / TIM3_CH1_ReadValue2;
TIM3_CH1_CaptureNumber = 0;
}
}
}
}
//利用滴答定时器进行100ms捕获一个通道
static u16 pwm_capture_count=0;
if(++pwm_capture_count==100)
{
pwm_capture_count=0;
capture_flag = capture_flag % 2 + 1;
TIM3_CH1_CaptureNumber=0;
TIM3_CH2_CaptureNumber=0;
}
推荐阅读
- #|【蓝桥杯嵌入式】【STM32】10_InputCaputer之输入捕获
- #|【蓝桥杯嵌入式】【STM32】13_PWM输入捕获模式
- 笔记|使用STM32cubemx进行定时器单多路pwm输入捕获
- 笔记|STM32学习
- stm32|STM32学习笔记---电源管理
- STM32|STM32GPIO模式的理解
- backup|backup ram不稳定 stm32_STM32信息安全硬件特性
- stm32|stm32学习之路,方法很重要
- MCU项目技术总结|基于stm32F4的项目总结(控制层设计(四)直流有刷电机驱动原理及驱动器选型)