图像处理笔记总目录 1 连通性 在图像中,最小的单位是像素,每个像素周围有8个邻接像素,常见的邻接关系有3种:4邻接、D邻接和8邻接。分别如下图所示:
文章图片
- 4邻接: 像素p ( x , y ) p(x,y) p(x,y) 的4邻域是: ( x + 1 , y ) ; ( x ? 1 , y ) ; ( x , y + 1 ) ; ( x , y ? 1 ) (x+1,y);(x-1,y);(x,y+1);(x,y-1) (x+1,y);(x?1,y);(x,y+1);(x,y?1),用N 4 ( p ) N_4(p) N4?(p) 表示像素p p p 的4邻接
- D邻接: 像素p ( x , y ) p(x,y) p(x,y) 的D邻域是:对角上的点( x + 1 , y + 1 ) ; ( x + 1 , y ? 1 ) ; ( x ? 1 , y + 1 ) ; ( x ? 1 , y ? 1 ) (x+1,y+1);(x+1,y-1);(x-1,y+1);(x-1,y-1) (x+1,y+1);(x+1,y?1);(x?1,y+1);(x?1,y?1),用N D ( p ) N_D(p) ND?(p) 表示像素p p p 的D邻域
- 8邻接: 像素p ( x , y ) p(x,y) p(x,y) 的8邻域是: 4邻域的点 + D邻域的点,用N 8 ( p ) N_{8}(p) N8?(p) 表示像素p p p 的8邻域
- 两个像素的位置是否相邻
- 两个像素的灰度值是否满足特定的相似性准则(或者是否相等)
- 4联通:对于具有值V V V 的像素p p p 和q q q,如果q q q 在集合N 4 ( p ) N_4(p) N4?(p) 中,则称这两个像素是4连通。
- 8联通:对于具有值V V V 的像素p p p 和q q q,如果q q q 在集合N 8 ( p ) N_8(p) N8?(p) 中,则称这两个像素是8连通。
文章图片
- q q q 在集合N 4 ( p ) N_4(p) N4?(p) 中
- 或q q q 在集合N D ( p ) N_D(p) ND?(p) 中,并且N 4 ( p ) N_4(p) N4?(p) 与N 4 ( q ) N_4(q) N4?(q) 的交集为空(没有值V V V 的像素)
文章图片
2 形态学操作 形态学转换是基于图像形状的一些简单操作。它通常在二进制图像上执行。腐蚀和膨胀是两个基本的形态学运算符。然后它的变体形式如开运算,闭运算,礼帽黑帽等。
2.1 腐蚀和膨胀 腐蚀和膨胀是最基本的形态学操作,腐蚀和膨胀都是针对白色部分(高亮部分)而言的。
膨胀就是使图像中高亮部分扩张,效果图拥有比原图更大的高亮区域;腐蚀是原图中的高亮区域被蚕食,效果图拥有比原图更小的高亮区域。膨胀是求局部最大值的操作,腐蚀是求局部最小值的操作。
2.1.1 腐蚀
具体操作是:用一个结构元素扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为1,则该像素为1,否则为0。如下图所示,结构A被结构B腐蚀后:
文章图片
腐蚀的作用是消除物体边界点,使目标缩小,可以消除小于结构元素的噪声点。API:
cv.erode(img,kernel,iterations)
参数:
- img:要处理的图像
- kernel:核结构
- iterations:腐蚀的次数,默认是1
具体操作是:用一个结构元素扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为0,则该像素为0,否则为1。如下图所示,结构A被结构B腐蚀后:
文章图片
膨胀的作用是将与物体接触的所有背景点合并到物体中,使目标增大,可添补目标中的孔洞。API:
cv.dilate(img,kernel,iterations)
参数:
- img:要处理的图像
- kernel:核结构
- iterations:腐蚀的次数,默认是1
我们使用一个 5? * ? 5 的卷积核实现腐蚀和膨胀的运算:
import numpy as np
import cv2.cv2 as cv
import matplotlib.pyplot as plt
# 1 读取图像
img = cv.imread("./image/image3.png")
# 2 创建核结构
kernel = np.ones((5, 5), np.uint8)# 3 图像腐蚀和膨胀
erosion = cv.erode(img, kernel) # 腐蚀
dilate = cv.dilate(img,kernel) # 膨胀# 4 图像展示
fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(10,8),dpi=100)
axes[0].imshow(img)
axes[0].set_title("原图")
axes[1].imshow(erosion)
axes[1].set_title("腐蚀后结果")
axes[2].imshow(dilate)
axes[2].set_title("膨胀后结果")
plt.show()
文章图片
2.2 开闭运算 开运算和闭运算是将腐蚀和膨胀按照一定的次序进行处理。 但这两者并不是可逆的,即先开后闭并不能得到原来的图像。
2.2.1 开运算
开运算是先腐蚀后膨胀
- 作用: 分离物体,消除小区域。
- 特点: 消除噪点,去除小的干扰块,而不影响原来的图像。
文章图片
2.2.2 闭运算
闭运算与开运算相反,是先膨胀后腐蚀
- 作用: 消除/“闭合”物体里面的孔洞
- 特点: 可以填充闭合区域。
文章图片
API:
cv.morphologyEx(img, op, kernel)
参数:
- img:要处理的图像
- op:处理方式:若进行开运算,则设为
cv.MORPH_OPEN
,若进行闭运算,则设为cv.MORPH_CLOSE
- Kernel:核结构
使用 10? * ? 10 的核结构对卷积进行开闭运算的实现
import numpy as np
import cv2.cv2 as cv
import matplotlib.pyplot as plt
# 1 读取图像
img1 = cv.imread("./image/image5.png")
img2 = cv.imread("./image/image6.png")
# 2 创建核结构
kernel = np.ones((10, 10), np.uint8)
# 3 图像的开闭运算
cvOpen = cv.morphologyEx(img1,cv.MORPH_OPEN,kernel) # 开运算
cvClose = cv.morphologyEx(img2,cv.MORPH_CLOSE,kernel)# 闭运算
# 4 图像展示
fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(10,8))
axes[0,0].imshow(img1)
axes[0,0].set_title("原图")
axes[0,1].imshow(cvOpen)
axes[0,1].set_title("开运算结果")
axes[1,0].imshow(img2)
axes[1,0].set_title("原图")
axes[1,1].imshow(cvClose)
axes[1,1].set_title("闭运算结果")
plt.show()
文章图片
2.3 礼帽和黑帽 2.3.1 礼帽运算
原图像与“开运算”的结果图之差,如下式计算:
文章图片
因为开运算带来的结果是放大了裂缝或者局部低亮度的区域,因此,从原图中减去开运算后的图,得到的效果图突出了比原图轮廓周围的区域更明亮的区域,且这一操作和选择的核的大小相关。
礼帽运算用来分离比邻近点亮一些的斑块。当一幅图像具有大幅的背景的时候,而微小物品比较有规律的情况下,可以使用顶帽运算进行背景提取。
2.3.2 黑帽运算
为”闭运算“的结果图与原图像之差。数学表达式为:
文章图片
黑帽运算后的效果图突出了比原图轮廓周围的区域更暗的区域,且这一操作和选择的核的大小相关。
黑帽运算用来分离比邻近点暗一些的斑块。
API:
cv.morphologyEx(img, op, kernel)
参数:
- img:要处理的图像
- op:处理方式
文章图片
- Kernel:核结构
import numpy as np
import cv2.cv2 as cv
import matplotlib.pyplot as plt
# 1 读取图像
img1 = cv.imread("./image/image5.png")
img2 = cv.imread("./image/image6.png")
# 2 创建核结构
kernel = np.ones((10, 10), np.uint8)
# 3 图像的礼帽和黑帽运算
cvOpen = cv.morphologyEx(img1,cv.MORPH_TOPHAT,kernel) # 礼帽运算
cvClose = cv.morphologyEx(img2,cv.MORPH_BLACKHAT,kernel)# 黑帽运算
# 4 图像显示
fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(10,8))
axes[0,0].imshow(img1)
axes[0,0].set_title("原图")
axes[0,1].imshow(cvOpen)
axes[0,1].set_title("礼帽运算结果")
axes[1,0].imshow(img2)
axes[1,0].set_title("原图")
axes[1,1].imshow(cvClose)
axes[1,1].set_title("黑帽运算结果")
plt.show()
文章图片
【计算机视觉|图像处理(五)(形态学操作)】简单理解:
- 礼帽(顶帽):突出目标外的噪音
- 黑帽:突出目标内的噪音
推荐阅读
- java|2020 中国大学生计算机设计大赛
- python|OpenCV绘制图像与文字(可作为脚手架代码)(python) Open_CV系列(四)
- 人工智能|盘点百度、阿里、腾讯、华为自动驾驶战略
- 使用opencv的仿射变换函数warpAffine实现对图像的任意角度旋转
- opencv|opencv 几何变换之仿射变换
- #|【opencv】关于透视变换
- OpenCV|Opencv中使用Surf特征实现图像配准及对透视变换矩阵H的平移修正
- 人工智能|数据挖掘——学习笔记(机器学习--监督,非监督,半监督学习)
- OpenCV|OpenCV C++案例实战四《图像透视矫正》