Linux下搭建Spark|Linux下搭建Spark 的 Python 编程环境
Spark编程环境
Spark 可以独立安装使用,也可以和Hadoop 一起安装使用。在安装 Spark 之前,首先确保你的电脑上已经安装了 [Java](https://www.tuicool.com/Java "https://www.linuxidc.com/topicnews.aspx?tid=19") 8 或者更高的版本。
在这推荐下小编创建的Python学习交流群835017344,可以获取Python入门基础教程,送给每一位小伙伴,这里是小白聚集地,每天还会直播和大家交流分享经验哦,欢迎初学和进阶中的小伙伴。Spark 安装
访问 Spark 下载页面 ,并选择最新版本的 Spark 直接下载,当前的最新版本是 2.4.2 。下载好之后需要解压缩到安装文件夹中,看自己的喜好,我们是安装到了
/opt 目录下。
tar -xzf spark-2.4.2-bin-hadoop2.7.tgz
mv spark-2.4.2-bin-hadoop2.7/opt/spark-2.4.2
为了能在终端中直接打开 Spark 的
shell 环境,需要配置相应的环境变量。这里我由于使用的是
zsh,所以需要配置环境到 `~/.zshrc 中。```没有安装 zsh 的可以配置到
~/.bashrc 中
# 编辑 zshrc 文件
sudo gedit ~/.zshrc
增加以下内容:export SPARK_HOME=/opt/spark-2.4.2export PATH=PATH export PythonPATH=SPARK_HOME/python/lib/py4j-0.10.4-src.zip:$PYTHONPATH
配置完成后,在
shell 中输入
spark-shell 或者 pyspark 就可以进入到 Spark 的交互式编程环境中,前者是进入
Scala 交互式环境,后者是进入 `Python 交互式环境。`````配置 Python 编程环境
在这里介绍两种编程环境,
Jupyter 和
Visual Studio Code。前者方便进行交互式编程,后者方便最终的集成式开发。``PySpark in Jupyter 首先介绍如何在
Jupyter 中使用 Spark,注意这里 Jupyter notebook 和 Jupyter lab 是通用的方式,此处以 Jupyter lab 中的配置为例:
在 Jupyter lab 中使用 PySpark 存在两种方法:
pyspark 将自动打开一个 Jupyter lab;
findSpark 包来加载 PySpark。
第一个选项更快,但特定于Jupyter笔记本,第二个选项是一个更广泛的方法,使PySpark在你任意喜欢的IDE中都可用,强烈推荐第二种方法。
方法一:配置 PySpark 启动器 更新 PySpark 启动器的环境变量,继续在
~/.zshrc 文件中增加以下内容:
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS='lab'
如果要使用 jupyter notebook,则将第二个参数的值改为 notebook
刷新环境变量或者重启机器,并执行
pyspark 命令,将直接打开一个启动了 Spark 的 Jupyter lab。
pyspark
文章图片
image 方法二:使用 findSpark 包 在 Jupyter lab 中使用 PySpark 还有另一种更通用的方法:使用
findspark 包在代码中提供 Spark 上下文环境。
findspark 包不是特定于 Jupyter lab 的,您也可以其它的 IDE 中使用该方法,因此这种方法更通用,也更推荐该方法。
首先安装 findspark:
pip install findspark
之后打开一个 Jupyter lab,我们在进行 Spark 编程时,需要先导入 findspark 包,示例如下:
# 导入 findspark 并初始化import findspark
findspark.init()from pyspark importSparkConf,SparkContextimport random
配置 Spark conf =SparkConf().setMaster("local[]").setAppName("Pi")# 利用上下文启动 Spark
sc =SparkContext(conf=conf)
num_samples =100000000definside(p):
x, y = random.random(), random.random()return xx + yy <1
count = sc.parallelize(range(0, num_samples)).filter(inside).count()
pi =4 count / num_samples
print(pi)
sc.stop()
运行示例:
文章图片
image PySpark in VScode
Visual Studio Code 作为一个优秀的编辑器,对于
Python 开发十分便利。这里首先推荐个人常用的一些插件:``- Python:必装的插件,提供了Python语言支持;
- Code Runner:支持运行文件中的某些片段;
VScode 上使用 Spark 就不需要使用
findspark 包了,可以直接进行编程:``【Linux下搭建Spark|Linux下搭建Spark 的 Python 编程环境】
from pyspark importSparkContext,SparkConf
conf =SparkConf().setMaster("local[*]").setAppName("test")
sc =SparkContext(conf=conf)
logFile ="file:///opt/spark-2.4.2/README.md"
logData = https://www.it610.com/article/sc.textFile(logFile,2).cache()
numAs = logData.filter(lambda line:'a'in line).count()
numBs = logData.filter(lambda line:'b'in line).count()print("Lines with a: {0}, Lines with b:{1}".format(numAs, numBs))
推荐阅读
- 开学第一天(下)
- 【故障公告】周五下午的一次突发故障
- 生活随笔|好天气下的意外之喜
- MongoDB,Wondows下免安装版|MongoDB,Wondows下免安装版 (简化版操作)
- 汇讲-勇于突破
- Android中的AES加密-下
- 说的真好
- 六步搭建ES6语法环境
- 放下心中的偶像包袱吧
- Linux下面如何查看tomcat已经使用多少线程