Python|Python 迭代器与生成器
http://www.runoob.com/python3/python3-iterator-generator.html
https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/0014317799226173f45ce40636141b6abc8424e12b5fb27000
迭代器
- 迭代是Python最强大的功能之一,是访问集合元素的一种方式。
- 迭代器是一个可以记住遍历的位置的对象。
- 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
- 迭代器有两个基本的方法:iter() 和 next()。
- 字符串,列表或元组对象都可用于创建迭代器
>>>list=[1,2,3,4]
>>> it = iter(list)# 创建迭代器对象
>>> print (next(it))# 输出迭代器的下一个元素
1
>>> print (next(it))
2
>>>
迭代器对象可以使用常规for语句进行遍历:
list=[1,2,3,4]
it = iter(list)# 创建迭代器对象
for x in it:
print (x, end=" ")
1 2 3 4
也可以使用 next() 函数:
import sys# 引入 sys 模块
list=[1,2,3,4]
it = iter(list)# 创建迭代器对象
while True:
try:
print (next(it))
except StopIteration:
sys.exit()
创建一个迭代器 把一个类作为一个迭代器使用需要在类中实现两个方法 iter() 与 next() 。
- iter() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 next() 方法并通过 StopIteration 异常标识迭代的完成。
- next() 方法(Python 2 里是 next())会返回下一个迭代器对象。
class MyNumbers:
def __iter__(self):
self.a = 1
return self
def __next__(self):
x = self.a
self.a += 1
return x
myclass = MyNumbers()
myiter = iter(myclass)
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
1
2
3
4
5
StopIteration StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 next() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。
class MyNumbers:
def __iter__(self):
self.a = 1
return self
def __next__(self):
if self.a <= 20:
x = self.a
self.a += 1
return x
else:
raise StopIteration
myclass = MyNumbers()
myiter = iter(myclass)
for x in myiter:
print(x)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
生成器 在 Python 中,使用了 yield 的函数被称为生成器(generator)。
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,返回的是一个迭代器对象。
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
0 1 1 2 3 5 8 13 21 34 55
generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。
generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
生成器作用:拿列表来讲,不用创建完整的列表,可以节省大量空间,一边循环一边计算的机制,称为生成器:generator
可以直接作用于for循环的对象统称为可迭代对象:Iterable;可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。把list、dict、str等Iterable变成Iterator可以使用iter()函数。
为什么list、dict、str等数据类型不是Iterator?
【Python|Python 迭代器与生成器】这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
- 凡是可作用于for循环的对象都是Iterable类型;
- 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
- 集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
- Python的for循环本质上就是通过不断调用next()函数实现的
推荐阅读
- Docker应用:容器间通信与Mariadb数据库主从复制
- 人生感悟记#环境仪器宋庆国成长记#072
- python学习之|python学习之 实现QQ自动发送消息
- 标签、语法规范、内联框架、超链接、CSS的编写位置、CSS语法、开发工具、块和内联、常用选择器、后代元素选择器、伪类、伪元素。
- 逻辑回归的理解与python示例
- python自定义封装带颜色的logging模块
- 【Leetcode/Python】001-Two|【Leetcode/Python】001-Two Sum
- 视频转换器哪种好用()
- Python基础|Python基础 - 练习1
- NeuVector 会是下一个爆款云原生安全神器吗()