「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)

今日推荐: Github 标星 100k!2021 最新Java 学习线路图是怎样的?
【「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)】下午好,我是 Guide哥!
今天分享一道朋友去京东面试真实遇到的面试题:“为什么要分布式ID?你项目中是怎么做的?”。
这篇文章我会说说自己的看法,详细介绍一下分布式ID相关的内容包括分布式 ID 的基本要求以及分布式 ID 常见的解决方案。
这篇文章全程都是大白话的形式,希望能够为你带来帮助!
原创不易,若有帮助,点赞/分享就是对我最大的鼓励!
个人能力有限。如果文章有任何需要补充/完善/修改的地方,欢迎在评论区指出,共同进步!
分布式 ID 何为 ID?
日常开发中,我们需要对系统中的各种数据使用 ID 唯一表示,比如用户 ID 对应且仅对应一个人,商品 ID 对应且仅对应一件商品,订单 ID 对应且仅对应一个订单。
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

我们现实生活中也有各种 ID,比如身份证 ID 对应且仅对应一个人、地址 ID 对应且仅对应
简单来说,ID 就是数据的唯一标识。
何为分布式 ID?
分布式 ID 是分布式系统下的 ID。分布式 ID 不存在与现实生活中,属于计算机系统中的一个概念。
我简单举一个分库分表的例子。
我司的一个项目,使用的是单机 MySQL 。但是,没想到的是,项目上线一个月之后,随着使用人数越来越多,整个系统的数据量将越来越大。
单机 MySQL 已经没办法支撑了,需要进行分库分表(推荐 Sharding-JDBC)。
在分库之后, 数据遍布在不同服务器上的数据库,数据库的自增主键已经没办法满足生成的主键唯一了。我们如何为不同的数据节点生成全局唯一主键呢?
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

这个时候就需要生成分布式 ID了。
分布式 ID 需要满足哪些要求?
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

分布式 ID 作为分布式系统中必不可少的一环,很多地方都要用到分布式 ID。
一个最基本的分布式 ID 需要满足下面这些要求:
  • 全局唯一 :ID 的全局唯一性肯定是首先要满足的!
  • 高性能 : 分布式 ID 的生成速度要快,对本地资源消耗要小。
  • 高可用 :生成分布式 ID 的服务要保证可用性无限接近于 100%。
  • 方便易用 :拿来即用,使用方便,快速接入!
除了这些之外,一个比较好的分布式 ID 还应保证:
  • 安全 :ID 中不包含敏感信息。
  • 有序递增 :如果要把 ID 存放在数据库的话,ID 的有序性可以提升数据库写入速度。并且,很多时候 ,我们还很有可能会直接通过 ID 来进行排序。
  • 有具体的业务含义 :生成的 ID 如果能有具体的业务含义,可以让定位问题以及开发更透明化(通过 ID 就能确定是哪个业务)。
  • 独立部署 :也就是分布式系统单独有一个发号器服务,专门用来生成分布式 ID。这样就生成 ID 的服务可以和业务相关的服务解耦。不过,这样同样带来了网络调用消耗增加的问题。总的来说,如果需要用到分布式 ID 的场景比较多的话,独立部署的发号器服务还是很有必要的。
分布式 ID 常见解决方案 数据库
数据库主键自增 这种方式就比较简单直白了,就是通过关系型数据库的自增主键产生来唯一的 ID。
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

以 MySQL 举例,我们通过下面的方式即可。
1.创建一个数据库表。
CREATE TABLE `sequence_id` ( `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT, `stub` char(10) NOT NULL DEFAULT '', PRIMARY KEY (`id`), UNIQUE KEY `stub` (`stub`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

stub 字段无意义,只是为了占位,便于我们插入或者修改数据。并且,给 stub 字段创建了唯一索引,保证其唯一性。
2.通过 replace into 来插入数据。
BEGIN; REPLACE INTO sequence_id (stub) VALUES ('stub'); SELECT LAST_INSERT_ID(); COMMIT;

插入数据这里,我们没有使用 insert into 而是使用 replace into 来插入数据,具体步骤是这样的:
1)第一步: 尝试把数据插入到表中。
2)第二步: 如果主键或唯一索引字段出现重复数据错误而插入失败时,先从表中删除含有重复关键字值的冲突行,然后再次尝试把数据插入到表中。
这种方式的优缺点也比较明显:
  • 优点 :实现起来比较简单、ID 有序递增、存储消耗空间小
  • 缺点 : 支持的并发量不大、存在数据库单点问题(可以使用数据库集群解决,不过增加了复杂度)、ID 没有具体业务含义、安全问题(比如根据订单 ID 的递增规律就能推算出每天的订单量,商业机密啊! )、每次获取 ID 都要访问一次数据库(增加了对数据库的压力,获取速度也慢)
数据库号段模式 数据库主键自增这种模式,每次获取 ID 都要访问一次数据库,ID 需求比较大的时候,肯定是不行的。
如果我们可以批量获取,然后存在在内存里面,需要用到的时候,直接从内存里面拿就舒服了!这也就是我们说的 基于数据库的号段模式来生成分布式 ID。
数据库的号段模式也是目前比较主流的一种分布式 ID 生成方式。像滴滴开源的Tinyid 就是基于这种方式来做的。不过,TinyId 使用了双号段缓存、增加多 db 支持等方式来进一步优化。
以 MySQL 举例,我们通过下面的方式即可。
1.创建一个数据库表。
CREATE TABLE `sequence_id_generator` ( `id` int(10) NOT NULL, `current_max_id` bigint(20) NOT NULL COMMENT '当前最大id', `step` int(10) NOT NULL COMMENT '号段的长度', `version` int(20) NOT NULL COMMENT '版本号', `biz_type`int(20) NOT NULL COMMENT '业务类型', PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

current_max_id 字段和step字段主要用于获取批量 ID,获取的批量 id 为: current_max_id ~ current_max_id+step
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

version 字段主要用于解决并发问题(乐观锁),biz_type 主要用于表示业余类型。
2.先插入一行数据。
INSERT INTO `sequence_id_generator` (`id`, `current_max_id`, `step`, `version`, `biz_type`) VALUES (1, 0, 100, 0, 101);

3.通过 SELECT 获取指定业务下的批量唯一 ID
SELECT `current_max_id`, `step`,`version` FROM `sequence_id_generator` where `biz_type` = 101

结果:
idcurrent_max_idstepversionbiz_type 101001101

4.不够用的话,更新之后重新 SELECT 即可。
UPDATE sequence_id_generator SET current_max_id = 0+100, version=version+1 WHERE version = 0AND `biz_type` = 101 SELECT `current_max_id`, `step`,`version` FROM `sequence_id_generator` where `biz_type` = 101

结果:
idcurrent_max_idstepversionbiz_type 11001001101

相比于数据库主键自增的方式,数据库的号段模式对于数据库的访问次数更少,数据库压力更小。
另外,为了避免单点问题,你可以从使用主从模式来提高可用性。
数据库号段模式的优缺点:
  • 优点 :ID 有序递增、存储消耗空间小
  • 缺点 :存在数据库单点问题(可以使用数据库集群解决,不过增加了复杂度)、ID 没有具体业务含义、安全问题(比如根据订单 ID 的递增规律就能推算出每天的订单量,商业机密啊! )
NoSQL 「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

一般情况下,NoSQL 方案使用 Redis 多一些。我们通过 Redis 的 incr 命令即可实现对 id 原子顺序递增。
127.0.0.1:6379> set sequence_id_biz_type 1 OK 127.0.0.1:6379> incr sequence_id_biz_type (integer) 2 127.0.0.1:6379> get sequence_id_biz_type "2"

为了提高可用性和并发,我们可以使用 Redis Cluser。Redis Cluser 是 Redis 官方提供的 Redis 集群解决方案(3.0+版本)。
除了 Redis Cluser 之外,你也可以使用开源的 Redis 集群方案Codis (大规模集群比如上百个节点的时候比较推荐)。
除了高可用和并发之外,我们知道 Redis 基于内存,我们需要持久化数据,避免重启机器或者机器故障后数据丢失。Redis 支持两种不同的持久化方式:快照(snapshotting,RDB)、只追加文件(append-only file, AOF)。 并且,Redis 4.0 开始支持 RDB 和 AOF 的混合持久化(默认关闭,可以通过配置项 aof-use-rdb-preamble 开启)。
关于 Redis 持久化,我这里就不过多介绍。不了解这部分内容的小伙伴,可以看看 JavaGuide 对于 Redis 知识点的总结。
Redis 方案的优缺点:
  • 优点 : 性能不错并且生成的 ID 是有序递增的
  • 缺点 : 和数据库主键自增方案的缺点类似
除了 Redis 之外,MongoDB ObjectId 经常也会被拿来当做分布式 ID 的解决方案。
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

MongoDB ObjectId 一共需要 12 个字节存储:
  • 0~3:时间戳
  • 3~6: 代表机器 ID
  • 7~8:机器进程 ID
  • 9~11 :自增值
MongoDB 方案的优缺点:
  • 优点 : 性能不错并且生成的 ID 是有序递增的
  • 缺点 : 需要解决重复 ID 问题(当机器时间不对的情况下,可能导致会产生重复 ID) 、有安全性问题(ID 生成有规律性)
算法
UUID UUID 是 Universally Unique Identifier(通用唯一标识符) 的缩写。UUID 包含 32 个 16 进制数字(8-4-4-4-12)。
JDK 就提供了现成的生成 UUID 的方法,一行代码就行了。
//输出示例:cb4a9ede-fa5e-4585-b9bb-d60bce986eaa UUID.randomUUID()

RFC 4122 中关于 UUID 的示例是这样的:
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

我们这里重点关注一下这个 Version(版本),不同的版本对应的 UUID 的生成规则是不同的。
5 种不同的 Version(版本)值分别对应的含义(参考维基百科对于 UUID 的介绍):
  • 版本 1 : UUID 是根据时间和节点 ID(通常是 MAC 地址)生成;
  • 版本 2 : UUID 是根据标识符(通常是组或用户 ID)、时间和节点 ID 生成;
  • 版本 3、版本 5 : 版本 5 - 确定性 UUID 通过散列(hashing)名字空间(namespace)标识符和名称生成;
  • 版本 4 : UUID 使用随机性或伪随机性生成。
下面是 Version 1 版本下生成的 UUID 的示例:
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

JDK 中通过 UUIDrandomUUID() 方法生成的 UUID 的版本默认为 4。
UUID uuid = UUID.randomUUID(); int version = uuid.version(); // 4

另外,Variant(变体)也有 4 种不同的值,这种值分别对应不同的含义。这里就不介绍了,貌似平时也不怎么需要关注。
需要用到的时候,去看看维基百科对于 UUID 的 Variant(变体) 相关的介绍即可。
从上面的介绍中可以看出,UUID 可以保证唯一性,因为其生成规则包括 MAC 地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素,计算机基于这些规则生成的 UUID 是肯定不会重复的。
虽然,UUID 可以做到全局唯一性,但是,我们一般很少会使用它。
比如使用 UUID 作为 MySQL 数据库主键的时候就非常不合适:
  • 数据库主键要尽量越短越好,而 UUID 的消耗的存储空间比较大(32 个字符串,128 位)。
  • UUID 是无顺序的,InnoDB 引擎下,数据库主键的无序性会严重影响数据库性能。
最后,我们再简单分析一下 UUID 的优缺点 (面试的时候可能会被问到的哦!) :
  • 优点 :生成速度比较快、简单易用
  • 缺点 : 存储消耗空间大(32 个字符串,128 位) 、 不安全(基于 MAC 地址生成 UUID 的算法会造成 MAC 地址泄露)、无序(非自增)、没有具体业务含义、需要解决重复 ID 问题(当机器时间不对的情况下,可能导致会产生重复 ID)
Snowflake(雪花算法) Snowflake 是 Twitter 开源的分布式 ID 生成算法。Snowflake 由 64 bit 的二进制数字组成,这 64bit 的二进制被分成了几部分,每一部分存储的数据都有特定的含义:
  • 第 0 位: 符号位(标识正负),始终为 0,没有用,不用管。
  • 第 1~41 位 :一共 41 位,用来表示时间戳,单位是毫秒,可以支撑 2 ^41 毫秒(约 69 年)
  • 第 42~52 位 :一共 10 位,一般来说,前 5 位表示机房 ID,后 5 位表示机器 ID(实际项目中可以根据实际情况调整)。这样就可以区分不同集群/机房的节点。
  • 第 53~64 位 :一共 12 位,用来表示序列号。 序列号为自增值,代表单台机器每毫秒能够产生的最大 ID 数(2^12 = 4096),也就是说单台机器每毫秒最多可以生成 4096 个 唯一 ID。
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

如果你想要使用 Snowflake 算法的话,一般不需要你自己再造轮子。有很多基于 Snowflake 算法的开源实现比如美团 的 Leaf、百度的 UidGenerator,并且这些开源实现对原有的 Snowflake 算法进行了优化。
另外,在实际项目中,我们一般也会对 Snowflake 算法进行改造,最常见的就是在 Snowflake 算法生成的 ID 中加入业务类型信息。
我们再来看看 Snowflake 算法的优缺点 :
  • 优点 :生成速度比较快、生成的 ID 有序递增、比较灵活(可以对 Snowflake 算法进行简单的改造比如加入业务 ID)
  • 缺点 : 需要解决重复 ID 问题(依赖时间,当机器时间不对的情况下,可能导致会产生重复 ID)。
开源框架
UidGenerator(百度) UidGenerator 是百度开源的一款基于 Snowflake(雪花算法)的唯一 ID 生成器。
不过,UidGenerator 对 Snowflake(雪花算法)进行了改进,生成的唯一 ID 组成如下。
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

可以看出,和原始 Snowflake(雪花算法)生成的唯一 ID 的组成不太一样。并且,上面这些参数我们都可以自定义。
UidGenerator 官方文档中的介绍如下:
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

自 18 年后,UidGenerator 就基本没有再维护了,我这里也不过多介绍。想要进一步了解的朋友,可以看看 UidGenerator 的官方介绍。
Leaf(美团) Leaf 是美团开源的一个分布式 ID 解决方案 。这个项目的名字 Leaf(树叶) 起源于德国哲学家、数学家莱布尼茨的一句话: “There are no two identical leaves in the world”(世界上没有两片相同的树叶) 。这名字起得真心挺不错的,有点文艺青年那味了!
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

Leaf 提供了 号段模式 和 Snowflake(雪花算法) 这两种模式来生成分布式 ID。并且,它支持双号段,还解决了雪花 ID 系统时钟回拨问题。不过,时钟问题的解决需要弱依赖于 Zookeeper 。
Leaf 的诞生主要是为了解决美团各个业务线生成分布式 ID 的方法多种多样以及不可靠的问题。
Leaf 对原有的号段模式进行改进,比如它这里增加了双号段避免获取 DB 在获取号段的时候阻塞请求获取 ID 的线程。简单来说,就是我一个号段还没用完之前,我自己就主动提前去获取下一个号段(图片来自于美团官方文章:《Leaf——美团点评分布式 ID 生成系统》)。
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

根据项目 README 介绍,在 4C8G VM 基础上,通过公司 RPC 方式调用,QPS 压测结果近 5w/s,TP999 1ms。
Tinyid(滴滴) Tinyid 是滴滴开源的一款基于数据库号段模式的唯一 ID 生成器。
数据库号段模式的原理我们在上面已经介绍过了。Tinyid 有哪些亮点呢?
为了搞清楚这个问题,我们先来看看基于数据库号段模式的简单架构方案。(图片来自于 Tinyid 的官方 wiki:《Tinyid 原理介绍》)
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

在这种架构模式下,我们通过 HTTP 请求向发号器服务申请唯一 ID。负载均衡 router 会把我们的请求送往其中的一台 tinyid-server。
这种方案有什么问题呢?在我看来(Tinyid 官方 wiki 也有介绍到),主要由下面这 2 个问题:
  • 获取新号段的情况下,程序获取唯一 ID 的速度比较慢。
  • 需要保证 DB 高可用,这个是比较麻烦且耗费资源的。
除此之外,HTTP 调用也存在网络开销。
Tinyid 的原理比较简单,其架构如下图所示:
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

相比于基于数据库号段模式的简单架构方案,Tinyid 方案主要做了下面这些优化:
  • 双号段缓存 :为了避免在获取新号段的情况下,程序获取唯一 ID 的速度比较慢。 Tinyid 中的号段在用到一定程度的时候,就会去异步加载下一个号段,保证内存中始终有可用号段。
  • 增加多 db 支持 :支持多个 DB,并且,每个 DB 都能生成唯一 ID,提高了可用性。
  • 增加 tinyid-client :纯本地操作,无 HTTP 请求消耗,性能和可用性都有很大提升。
Tinyid 的优缺点这里就不分析了,结合数据库号段模式的优缺点和 Tinyid 的原理就能知道。
分布式 ID 生成方案总结 这篇文章中,我基本上已经把最常见的分布式 ID 生成方案都总结了一波。
后记 最后再推荐一个非常不错的 Java 教程类开源项目:JavaGuide 。我在大三开始准备秋招面试的时候,创建了 JavaGuide 这个项目。目前这个项目已经有 100k+的 star,相关阅读:《1049 天,100K!简单复盘!》 。
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

对于你学习 Java 以及准备 Java 方向的面试都很有帮助!正如作者说的那样,这是一份:涵盖大部分 Java 程序员所需要掌握的核心知识的 Java 学习+面试指南!
相关推荐:
  • 图解计算机基础!
  • 阿里ACM大佬开源的学习笔记!TQL!
  • 计算机优质书籍搜罗+学习路线推荐!
「Java面试指北」为什么需要分布式ID(大厂的分布式|「Java面试指北」为什么需要分布式ID?大厂的分布式 ID 生成方案是什么样的?| JavaGuide)
文章图片

我是 Guide哥,拥抱开源,喜欢烹饪。开源项目 JavaGuide 作者,Github:Snailclimb - Overview 。未来几年,希望持续完善 JavaGuide,争取能够帮助更多学习 Java 的小伙伴!共勉!凎!点击查看我的2020年工作汇报!
除了上面介绍的方式之外,像 ZooKeeper 这类中间件也可以帮助我们生成唯一 ID。没有银弹,一定要结合实际项目来选择最适合自己的方案。

    推荐阅读