数据科学|数据科学 6 机器学习(k-近邻算法)

-近邻法简介 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据
后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分
类,作为新数据的分类。

数据科学|数据科学 6 机器学习(k-近邻算法)
文章图片

电影打斗镜头数为49,接吻镜头数为51
人的判断 k-近邻算法的判断

数据科学|数据科学 6 机器学习(k-近邻算法)
文章图片
k-近邻算法用距离进行度量 数据科学|数据科学 6 机器学习(k-近邻算法)
文章图片

  • (101,20)->动作?(108,5)的距离约为16.55
  • (101,20)->动作?(115,8)的距离约为18.44
  • (101,20)->爱情?(5,89)的距离约为118.22
  • (101,20)->爱情?(1,101)的距离约为128.69
    圆点标记的电影到动作片(108,5)的距离最近,为16.55。如果算法直接根据这个结果,判断该圆点标记的电影为动作片,这个算法就是最近邻算法,而非k-近邻算法
k-近邻算法步骤如下:
  • 计算已知类别数据集中的点与当前点之间的距离;
  • 按照距离递增次序排序;
  • 选取与当前点距离最近的k个点;
  • 确定前k个点所在类别的出现频率;
  • 返回前k个点所出现频率最高的类别作为当前点的预测分类。
    例如,现在我这个k值取3,那么在电影片中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该圆点标记的电影为动作片。这个判别过程就是k-近邻算法。
准备数据集
import numpy as np """ 函数说明:创建数据集 Parameters: 无 Returns: group - 数据集 labels - 分类标签 """ def createDataSet(): #四组?维特征 group = np.array([[1,101],[5,89],[108,5],[115,8]]) #四组特征的标签 labels = ['爱情片','爱情片','动作片','动作片'] return group, labelsimport numpy as np import operator """ 函数说明:kNN算法,分类器 Parameters: inX - 用于分类的数据(测试集) dataSet - 用于训练的数据(训练集) labes - 分类标签 k - kNN算法参数,选择距离最小的k个点 Returns: sortedClassCount[0][0] - 分类结果 """def classify0(inX, dataSet, labels, k): #numpy函数shape[0]返回dataSet的?数 dataSetSize = dataSet.shape[0] #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向) diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #二维特征相减后平方 sqDiffMat = diffMat**2 #sum()所有元素相加,sum(0)列相加,sum(1)行相加 sqDistances = sqDiffMat.sum(axis=1) #开方,计算出距离 distances = sqDistances**0.5 #返回distances中元素从小到大排序后的索引值 sortedDistIndices = distances.argsort() #定一个记录类别次数的字典 classCount = {} for i in range(k): #取出前k个元素的类别 voteIlabel = labels[sortedDistIndices[i]] #dict.get(key,default=None),字典的get()?法,返回指定键的值,如果值不在字典中返回默认值。 #计算类别次数 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #python3中?items()替换python2中的iteritems() #key=operator.itemgetter(1)根据字典的值进行排序 #key=operator.itemgetter(0)根据字典的键进行排序 #reverse降序排序字典 sortedClassCount =sorted(classCount.items(),key=operator.itemgetter(1), reverse=True) #返回次数最多的类别,即所要分类的类别 return sortedClassCount[0][0]

预测圆点标记的电影(101,20)的类别,K-NN的k值为3
#创建数据集 group, labels = createDataSet() #测试集 test = [101,20] #kNN分类 test_class = classify0(test, group, labels, 3) #打印分类结果 print(test_class)

多个特征点,可以用欧氏距离(也称欧几里德度量)

数据科学|数据科学 6 机器学习(k-近邻算法)
文章图片

错误率-分类器给出错误结果的次数除以测试执的的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0
k-近邻算法实战之约会网站配对效果判定 k-近邻算法的一般流程:
  • 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照指定的格式进行存储,便于解析及处理。
  • 准备数据:使用Python解析、预处理数据。
  • 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
  • 测试算法:计算错误率。
  • 使用算法:错误率在可接受范围内,就可以运用k-近邻算法进?分类。
海伦女士一直使用在线约会网站寻找适合自己的约会对象
她发现自己交往过的人可以进行如下分类:
  • 不喜欢的人
  • 魅力一般的人
  • 极具魅力的人
    海伦收集约会数据存放在文本文件datingTestSet.txt
样本数据主要包含以下3种特征:
  • 每年获得的飞行常客里程数
  • 玩视频游戏所消耗时间百分比
  • 每周消费的冰淇淋公升数
import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 Parameters: filename - 文件名 Returns: returnMat - 特征矩阵 classLabelVector - 分类Label向量 """def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件个数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空格符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切割。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据?本中标记的喜欢的程度进?分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector

#打开的?件名 filename = 'examples/knn/datingTestSet.txt' #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) print(datingDataMat) print(datingLabels)

分析数据:数据可视化
import matplotlib.lines as mlines import matplotlib.pyplot as plt import numpy as np """ 函数说明:可视化数据 Parameters: datingDataMat - 特征矩阵 datingLabels - 分类Label Returns: 无 """ def showdatas(datingDataMat, datingLabels): #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域 fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False,sharey=False, figsize=(13,8)) numberOfLabels = len(datingLabels) LabelsColors = [] for i in datingLabels: if i == 1: LabelsColors.append('black') if i == 2: LabelsColors.append('orange') if i == 3: LabelsColors.append('red') #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第一列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5 axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1],color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs0_title_text = axs[0][0].set_title('plane vs game') axs0_xlabel_text = axs[0][0].set_xlabel('plane') axs0_ylabel_text = axs[0][0].set_ylabel(u'game') plt.setp(axs0_title_text, size=9, weight='bold', color='red') plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2],color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs1_title_text = axs[0][1].set_title('plane vs ice cream') axs1_xlabel_text = axs[0][1].set_xlabel(u'plane') axs1_ylabel_text = axs[0][1].set_ylabel(u'ice cream') plt.setp(axs1_title_text, size=9, weight='bold', color='red') plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')#画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs2_title_text = axs[1][0].set_title(u'game vs ice cream') axs2_xlabel_text = axs[1][0].set_xlabel(u'game') axs2_ylabel_text = axs[1][0].set_ylabel(u'ice cream') plt.setp(axs2_title_text, size=9, weight='bold', color='red') plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black') #设置图例 didntLike = mlines.Line2D([], [], color='black', marker='.',markersize=6, label='didntLike') smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='smallDoses') largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='largeDoses') #添加图例 axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses]) axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses]) axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses]) #显示图口 plt.show()

数据科学|数据科学 6 机器学习(k-近邻算法)
文章图片

数据科学|数据科学 6 机器学习(k-近邻算法)
文章图片

在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1区间内的值
newValue = https://www.it610.com/article/(oldValue - min) / (max - min)

""" 函数说明:对数据进行归一化 Parameters: dataSet - 特征矩阵 Returns: normDataSet - 归一化后的特征矩阵 ranges - 数据范围 minVals - 数据最小值 """ def autoNorm(dataSet): #获得数据的最小值 minVals = dataSet.min(0) maxVals = dataSet.max(0) #最大值和最小值的范围 ranges = maxVals - minVals #shape(dataSet)返回dataSet的矩阵行列数 normDataSet = np.zeros(np.shape(dataSet)) #返回dataSet的行数 m = dataSet.shape[0] #原始值减去最小值 normDataSet = dataSet - np.tile(minVals, (m, 1)) #除以最大和最小值的差,得到归一化数据 normDataSet = normDataSet / np.tile(ranges, (m, 1)) #返回归一化数据结果,数据范围,最小值 return normDataSet, ranges, minVals

#打开的文件名 filename = "examples/knn/datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) normDataSet, ranges, minVals = autoNorm(datingDataMat) print(normDataSet) print(ranges) print(minVals)

测试算法:验证分类器 【数据科学|数据科学 6 机器学习(k-近邻算法)】通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器
""" 函数说明:分类器测试函数 Parameters: 无 Returns: normDataSet - 归?化后的特征矩阵 ranges - 数据范围 minVals - 数据最?值 Modify: 2017-03-24 """ def datingClassTest(): #打开的文件名 filename = "examples/knn/datingTestSet.txt" #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中 datingDataMat, datingLabels = file2matrix(filename) #取所有数据的百分之比 hoRatio = 0.10 #数据归式化,返回归一化后的矩阵,数据范围,数据最小值 normMat, ranges, minVals = autoNorm(datingDataMat) #获得normMat的行数 m = normMat.shape[0] #百分之比的测试数据的个数 numTestVecs = int(m * hoRatio) #分类错误计数 errorCount = 0.0 for i in range(numTestVecs): #前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集 classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:], datingLabels[numTestVecs:m], 4) print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i])) if classifierResult != datingLabels[i]: errorCount += 1.0 print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))

datingClassTest()

    推荐阅读