深入 iOS 静态链接器(一)— ld64
文章图片
作者:字节跳动终端技术——李翔
前言
静态链接(static linking)是程序构建中的一个重要环节,它负责分析 compiler 等模块输出的 .o
、.a
、.dylib
、经过对 symbol 的解析、重定向、聚合,组装出 executable 供运行时 loader 和 dynamic linker 来执行,有着承上启下的作用。
文章图片
对于 iOS 工程而言,目前负责静态链接的主要是 ld64。苹果对 ld64 加持了一些功能,以适配 iOS 项目的构建,比如:
- 现在在 Xcode 中即使不主动管理依赖的系统动态库(如 UIKit),你的工程也可以正常链接成功
- 提供“强制加载静态库中 ObjC class 和 category” 的开关(默认开启),让 ObjC 的信息在输出中完整不丢失
- 基于二进制重排的启动速度优化,利用 ld64 的
-order_file
让 linker 按照指定顺序生成 Mach-O - 用
-exported_symbols_list
优化构建产物中 export info 占用的空间,减少包大小
目录
- 历史背景
- 概念铺垫
- ld64 命令参数
- ld64 执行流程
- ld64 on iOS
- 其他
- GNU ld:GNU ld,或者说 GNU linker,是 GNU 项目对 Unix ld 命令的实现。它是 GNU binary utils 的一部分,有两个版本:传统的基于 BFD & 只支持 ELF 的 gold)。(gold 由 Google 团队研发,2008 年被纳入 GNU binary utils。目前随着 Google 重心放到 llvm 的 lld 上,gold 几乎不怎么维护了)。 ld 的命名据说是来自
LoaDer
、Link eDitor
。 - ld64:ld64 是苹果为 Darwin 系统重新设计的 ld。和 ld 的最大区别在于,ld64 是 atom-based 而不是 section-based(关于 atom 的介绍后面会展开)。在 macOS 上执行
ld
(/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/ld
)默认就是 ld64。系统和 Xcode 自带的版本可以通过ld -version_details
查询,如 650.9。苹果在这里 https://opensource.apple.com/... 开放了 ld64 的源码,但更新不那么及时,始终落后于正式版(如 2021.8 为止开源最新是 609 版本,Xcode 12.5.1 是 650.9) 。zld 等基于 ld64 的项目都是 fork 自开源版的 ld64。
输入 —
.o
、.a
、.dylib
ld64 主要处理 Mach kernel) 上的 Mach-O 输入,包括:- Object File (
.o
)
- 由 compiler 生成,包含元数据(header、LoadCommand 等)、segments & sections(代码、数据 等)、symbol table & relocation entries。
- object file 之间可能相互依赖(如 A 引用了 B 定义的函数),static linker 做的事情本质上就是把这些信息关联起来输出成一个总的有效的 Mach-O 。
文章图片
- 静态库 (
.a
)
- 可以视为
.o
的集合,让工程代码能模块化地被组织和复用。 - 其头部还存储了 symbol name ->
.o
offset 的映射表,便于 link 时快速查询某个 symbol 的归属。 - 一个静态库可能包含多个架构(universal / fat Mach-O),static linker 在处理时会按需选择目标架构。可以通过
lipo
等工具查看其架构信息。
- 可以视为
文章图片
- 动态库 (
.dylib
、.tbd
)
- 不同于静态库,动态库由 dyld 在运行时经过 rebase、binding 等过程后加载。static linker 在 link 时仅在处理 undefined symbol 时会尝试从输入的动态库列表中查询每个动态库 export 的 symbol。
- iOS 工程中使用的大部分是系统动态库(UIKit 等),工程也可以以 framework 等形式提供自己的动态库(需要指定对 rpath 以让自定义动态库能被 dyld 正常加载)
.tbd
(text-based dylib stub) 是苹果在 Xcode 7 后引入的一种描述 dylib 的文件格式,包含支持的架构、导出哪些 symbol 等信息。通过解析.tbd
ld64 可以快速地知道该 dylib 提供了哪些 symbol 可被用于链接 & 有哪些其他动态库依赖,而不用去解析整个解析一遍 dylib。目前大多数系统的 dylib 都采用这种方式。
- 如 Foundation:
--- !tapi-tbd
tbd-version:4
targets:[ i386-ios-simulator, x86_64-ios-simulator, arm64-ios-simulator ]
uuids:
- target:i386-ios-simulator
value:A4A5325F-E813-3493-BAC8-76379097756A
- target:x86_64-ios-simulator
value:C2A18288-4AA2-3189-A1C6-5963E370DE4C
- target:arm64-ios-simulator
value:81DE1BE5-83FA-310A-9FB3-CF39C14CA977
install-name:'/System/Library/Frameworks/Foundation.framework/Foundation'
current-version: 1775.118.101
compatibility-version: 300
reexported-libraries:
- targets:[ i386-ios-simulator, x86_64-ios-simulator, arm64-ios-simulator ]
libraries:[ '/System/Library/Frameworks/CoreFoundation.framework/CoreFoundation',
'/usr/lib/libobjc.A.dylib' ]
exports:
- targets:[ arm64-ios-simulator, x86_64-ios-simulator, i386-ios-simulator ]
symbols:[ '$ld$hide$os10.0$_OBJC_CLASS_$_NSURLSessionStreamTask', '$ld$hide$os10.0$_OBJC_CLASS_$_NSURLSessionTaskMetrics',
....
_NSLog, _NSLogPageSize, _NSLogv, _NSMachErrorDomain, _NSMallocZone,
....]
Symbol & Symbol Table 对 static linker 来说,symbol 是 Mach-O 提供的、link 时需要参考的一个个基本元素。
Mach-O 有一块专门的区域用于存储所有的 symbol,即 symbol table。
global function、global variable、class 等都会作为一条条 entry 被放入 symbol table 中。
文章图片
Symbol 包含以下属性:
- 名称:具体生成规则由 compiler 决定。如 C variable
_someGlolbalVar
、C function_someGlobalFunction
、 ObjC class__OBJC_CLASS_$_SomeClass
、 ObjC method-[SomeClass foo]
等。不同的 compiler 有不同的 name mangling 策略。 - 是“定义”还是“引用”:对应函数、变量的“定义”和“引用”。
- visibility:如果是“定义”,还有 visibility 的概念来控制对其他文件的可见性(具体说明见后文「visibility」)、
- strong / weak:如果是“定义”,还有 strong / weak 的概念来控制多个“定义” 存在时的合并策略(具体说明见后文「strong / weak definition」。
Visibility
Mach-O 中将 symbol 分为三组:
- global / defined external symbol :外部可用的 symbol 定义
- local symbol:该文件定义和引用的 symbol,仅该文件可用(比如被
static
标记) - undefined external symbol:依赖外部的 symbol 引用
| ----------- | ----------- | ----------- |
| global / defined external symbol | 由该文件定义,对外部可见 |
int i = 1;
|| local symbol | 由该文件定义,对外部不可见 |
static int i = 1;
|| undefined external symbol | 引用了外部的定义 |
extern int i;
|可以通过查看该 Mach-O LoadCommand 中的
LC_DYSYMTAB
来获取三组 symbol 的偏移和大小文章图片
visibility 决定了 symbol definition 在 link 时对其他文件是否可见。上面说的 local symbol 对外不可见,global symbol 对外可见。
global symbol 里又分为两类:normal & private external。如果是 private external(对应 Mach-O 中
N_PEXT
字段) ,static linker 会在输出中把该 symbol 转为 local symbol。可以理解为该 symbol definition 只在这一次 link 过程中对外可见,后续 link 的产物如果要被二次 link,就对外不可见了(体现了 private 的性质)一个 symbol 是否是 「private external」可以在源码和编译期用
__attribute__((visibility("xxx")))
来标识,可选值为 default
(normal)、hidden
(private external)- 不指定
__attribute__((visibility("xxx")))
的,默认为default
-fvisibility
可以修改默认 visibility (gcc、clang 都支持)
- 指定
__attribute__((visibility("xxx")))
的,visibility 为xxx
// test.c__attribute__((visibility("default"))) int i1Default = 101;
__attribute__((visibility("hidden"))) int i1Hidden = 102;
int i1Normal = 103;
不指定
-fvisibility
:文章图片
-fvisibility=hidden
:文章图片
Strong / Weak definition
symbol definition 中还有 strong / weak 之分:当 static linker 发现多个 name 相同的 symbol definition 时,会根据 strong/weak 类型执行以下合并策略:
- 有多个 strong => 非法输入,abort
- 有且仅有一个 strong => 取该 strong
- 有多个 weak,没有 strong => 取第一个 weak
__attribute__((weak))
、#pragma weak
标记 weak 属性,看一个例子:// main.cvoid __attribute__((weak)) foo() {
printf("weak foo called");
}int main(int argc, char * argv[]) {
foo();
}// strong_foo.c
void foo() {
printf("strong foo called");
}
生成的
main.o
中该函数对应的 symbol table entry 被标记为了 N_WEAK_DEF
,static linker 据此来区分 strong / weak:文章图片
执行后输出:
strong foo called
要注意的是,分析最终输出使用了哪个 symbol definition 需要结合实际情况。比如某个 strong symbol 封装在静态库中,始终没有被 static linker 加载,而同名的 weak symbol 已经被加载了,上述(2)的策略就应当变成(3)了。(关于静态库中 symbol 的加载机制见后文)
Tentative definitions / Commons
symbol definition 还可能是 tentative definition(或者叫 common definition)。这个其实也很常见,比如:
int i;
这样一个未初始化的全局变量就是一个 tentative definition。
更官方一点的定义是:
A declaration of an identifier for an object that has file scope without an initializer, and without a storage-class specifier or with the storage-class specifier static说的比较绕不要被带进去了,可以先简单理解 tentative definition 为「未初始化的全局变量定义」。结合更多的例子来理解:
int i1 = 1;
// regular definition,global symbol
static int i2 = 2;
// regular definition,local symbol
extern int i3 = 3;
// regular definition,global symbol
int i4;
// tentative definition, global symbol
static int i5;
// tentative definition, local symbolint i1;
// valid tentative definition, refers to 第 1 行
int i2;
// invalid tentative definition,visibility 和第 2 行的 static 冲突
int i3;
// valid tentative definition, refers to 第 3 行
int i4;
// valid tentative definition, refers to 第 4 行
int i5;
// invalid tentative definition,visibility 和第 5 行的 static 冲突
tentative definition 在 Mach-O 中属于
__DATA,__common
这个 section。Relocation (Entries) compiler 无法在编译期确定所有 symbol 的地址(如对外部函数的调用),因此会在 Mach-O 对应的位置“留空”、并生成一条对应的 Relocation Entry。static linker 在链接期通过 Relocation Entry 知晓每个 section 中哪些位置需要被 relocate、如何 relocate。
Load Command 中的
LC_SEGMENT_64
描述了各个 section 对应的 Relocation Entries 的数量、偏移量:文章图片
Mach-O 中用
relocation_info
表示一条 Relocation Entry:r_address
:从该 section 头开始偏移多少位置的内容需要 relocater_extern
&r_symbolnum
r_extern
为 1 表示从 symbol table 的第r_symbolnum
个 symbol 读取信息r_extern
为 0 表示从第r_symbolnum
个 section 读取信息
r_type
:relocation 的类型,如X86_64_RELOC_BRANCH
表示 relocate 的是CALL/JMP
指令的内容
ld64 — Atom & Fixup ld64 是一种 atom-based linker,atom 是其执行处理的基本单元。atom 可以用来表示 symbol,也可以用来表示其他的信息,如
SectionBoundaryAtom
。ld64 在解析时会把 input files 抽象成各种 atoms,交由 Resolver 统一处理。相比 section-based linker ,atom-based linker 把处理对象视为一个 atom graph,更细的粒度方便了各种图算法的应用,也能更直接地实现各种特性。
Atom 有以下属性:
- name,对应上面 Symbol 的 name
- content
- 函数的 content 是其实现的代码指令
- 全局变量的 content 是其初始值
- scope,对应上面 Symbol 的 visibility
- definition kind,有四种,通过 Mach-O Symbol Table Entry 的
N_TYPE
字段得来
- regular:大多数 atom 是这种类型
- absolute:对应
N_ABS
,ld64 不会修改它的值 - tentative:
N_UNDF
,对应上面 Symbol 的 tentative definition - proxy:ld64 解析阶段如果发现某个 symbol 由动态库提供,会创建一个 proxy atom 占位
fixup 描述了 atom 之间的依赖关系,是 atom graph 中的「边」,dead code stripping 就需要这些依赖关系来判断哪些 atom 不被需要、可以移除。
一个 fixup 包含以下属性:
- kind:fixup 的类型,总共有几十种,如
kindStoreX86PCRel32
- offset: 对应 Relocation 的 offset
- addend:对应 Relocation 的 addend
- target atom:指向的 atom
- binding type:binding 策略(by-name、by-content、direct、indirect)
| ----------- | ----------- | ----------- |
| direct | 记录指向目标 Atom 的 pointer | 一般由同一个 object file 里对一些匿名、不可变的 target atom 的引用生成,如在同一个 object file 里调用 static function |
| by-name | 记录指向目标 Atom name(c-string) 的指针 | 引用 global symbol,比如调用
printf
|| indirect | 记录指向 atom indirect table 中某个 index 的指针 | 非 input file 提供,只能由 linker 在 link 阶段生成,可用于 atom 合并后的 case |
看一个简单的例子:
// Foo.h
extern const int someGlobalVar;
int someGlobalFunction(void);
// Foo.m
const int someGlobalVar = 100;
int someGlobalFunction() {
return 123;
}// main.m
#import "Foo.h"int main(int argc, char * argv[]) {
int i = someGlobalVar;
someGlobalFunction();
}
上面的代码中
main.m
调用了 Foo.h
定义的全局变量 someGlobalVar
和函数 someGlobalFunction
,compiler 生成的 main.o
和 Foo.o
存在以下 symbol:文章图片
link 时 ld64 会将其转换成如下的 atom graph:
文章图片
其中节点信息(atom)由
main.o
和 Foo.o
的 symbol table 提供,边信息(fixup)由 main.o
的 relocation entries 提供。如果涉及 ObjC,引用关系会更复杂一些,后文「
-ObjC
的由来」一节会详细展开。ld64 — Symbol Table ld64 内部维护了一个
SymbolTable
对象,里面包含了所有处理过的 symbol,并提供了各种快速查询的接口。往
SymbolTable
里增加 atom 时会触发合并操作,主要分为两种- by-name:name 相同的 atom 可以合并为一个,如前面提到的 Strong / Weak & Tentative Definition
- by-content:content 相同的 atom 可以合并为一个,如 string constant
SymbolTable
核心的数据结构是 _indirectBindingTable
,这东西其实就是个存储 atom 的数组,每个 atom 都会按解析顺序被 append 到这个数组上(如果不被合并的话)。同时
SymbolTable
还维护了多个 mapping,辅助用于外部根据 name、content、references 查询某个 atom 的各类需求。class SymbolTable : public ld::IndirectBindingTable
{
private:// core vector
std::vector&_indirectBindingTable;
// for by-name query
NameToSlot_byNameTable;
// for by-content query
ContentToSlot_literal4Table;
ContentToSlot_literal8Table;
ContentToSlot_literal16Table;
UTF16StringToSlot_utf16Table;
CStringToSlot_cstringTable;
// fo by-reference query
ReferencesToSlot_nonLazyPointerTable;
ReferencesToSlot_threadPointerTable;
ReferencesToSlot_cfStringTable;
ReferencesToSlot_objc2ClassRefTable;
ReferencesToSlot_pointerToCStringTable;
}
ld64 在 Resolve 阶段执行合并、处理 undefined 等操作都是基于该
SymbolTable
来完成。三、ld64 命令参数 iOS 工程中一般不会主动触发 ld64,可以在 Xcode build log 中找到 linking 对应的 clang 命令,复制到 terminal 加上
-v
来输出 clang 调用的 ld 命令。ld64 命令的参数形式为:
ld files...[options] [-o outputfile]
一个简单工程的 ld64 参数大致如下:
ld -filelist xxx -framework Foundation -lobjc -o yyy
其中
-o
指定 output 的路径- input files 的输入有几种方式
- 直接作为命令行的参数传入
- 通过
-filelist
以文件的形式传入,该文件以换行符分隔每一个 input file - 通过搜索路径
-lxxx
,告诉 ld64 去 lib 搜索路径找libxxx.a
或者libxxx.dylib
- lib 搜索路径默认是
/usr/lib
和/usr/local/lib
- 可以通过
-Lpath/to/your/lib
来增加额外的 lib 搜索路径
- lib 搜索路径默认是
-framework xxx
,告诉 ld64 去 framework 搜索路径找xxx.framework/xxx
- framework 搜索路径默认是
/Library/Frameworks
和/System/Library/Frameworks
- 可以通过
-Fpath/to/your/framework
来增加额外的 framework 搜索路径
- framework 搜索路径默认是
- 如果指定了
-syslibroot /path/to/search
,会给 lib 和 framework 搜索路径都加上/path/to/search
的前缀(如 iOS 模拟器一般会拼上形如/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator14.5.sdk
的路径)
- 其他 options
文章图片
执行逻辑可以分为以下 5 个大阶段:
- Command line processing
- Parsing input files
- Resolving
- Passes/Optimizations
- Generate output file
文章图片
Command Line Processing 第一步是解析命令行参数。比较直观,就是把命令行参数字符串模型化成内存中的
Options
对象,便于后续逻辑的读取。这一步主要做两件事:
- 把命令行里所有的 input,转换成 input file paths。上文提到在命令行中为 ld64 指定 input files 的输入有几种方式(
-filelist
、各种搜索路径等等的逻辑)都会在这一步转换解析成实际 input files 的绝对路径 - 把其他命令行参数(如
-dead_strip
)存到Options
对应的字段中
文章图片
具体实现可参考
Options.cpp
中 Options
的构造函数:// create object to track command line arguments
Options options(argc, argv);
Parsing input files 第二步是解析 input files。遍历第一步解析出来的 input file paths,从 file system 读取文件内容进一步分析转换成
atom、fixup、sections 等信息,供 Resolver 后续使用。
ld::tool::InputFiles inputFiles(options);
文章图片
上文提到 input files 主要分为
.o
、.a
、.dylib
三类,ld64 在解析不同类型的文件时,会调用该文件对应的 parser 来处理(如 .o
是 mach_o::relocatable::parse
),并返回对应的 ld::File
子类(如 .o
是 ld::relocatable::File
),有点工厂模式的味道。解析
.o
.o
是 ld64 获取 section 和 atom 信息的直接来源,因此需要深度地扫描。文章图片
mach_o::relocatable::parse
- 读取 Header 和 Load Command
LC_SEGMENT_64
提供各个 section 的信息(位置、大小、relocation 位置、relocation 条目数等)LC_SYMTAB
提供 symbol table 信息(位置、大小、条目数)LC_DYSYMTAB
提供 symbol table 分类统计
- local symbol 个数(该文件定义的 symbol,外部不可见)
- global / defined external symbol 个数(该文件定义的 symbol 且外部可见)
- undefined external symbol 个数(外部定义的 symbol)
LC_LINKER_OPTION
- Mach-O 中用来标识 linker option 的 Load Command,linker 会读取这些 options 作为补充
- 比如 auto-linking 等特性,就依赖这个 Load Command 来实现(注入类似
-framework UIKit
的参数)
- 其他信息如
LC_BUILD_VERSION
- 对 section 和 symbol 按地址排序:因为 Mach-O 自带的顺序可能是乱的
makeSections
:根据LC_SEGMENT_64
创建 Section 数组,存入_sectionsArray
- 处理
__compact_unwind
和__eh_frame
- 创建
_atomsArray
:遍历_sectionsArray
,把每个 section 的 atom 加入_atomsArray
makeFixups
:创建 fixup
- 遍历
_sectionsArray
,读取该 section 的 relocation entries - 转换成
FixupInAtom
- 存入
_allFixups
(vector
)
- 遍历
.o
的逻辑参考 ld::relocatable::File* Parser::parse
。解析
.a
处理
.a
时一开始只处理 .a
的 symbol table (.a
的 symbol table 存储的是 symbol name -> .o
offset,仅包含每个 .o
的 global symbols),不需要把内部所有的 .o
挨个解析一遍。Resolver 在 resolve undefined symbol 时会来查找 .a
的 symbol table 并按需懒加载对应的 .o
。文章图片
archive::Parser::parse
- 读取 header 校验该文件是否是
.a
- 读取
.a
symbol table header,获取 symbol table 条目数 - 把 symbol table 的映射存到
_hashTable
中
文章图片
mach_o::dylib::parse
- 读取 Header 和 Load Command(和
.o
类似)
LC_SEGMENT_64
、LC_SYMTAB
、LC_DYSYMTAB
等和.o
类似LC_DYLD_INFO
、LC_DYLD_INFO_ONLY
提供 dynamic loader info
- rebase info
- binding info
- weak binding info
- lazy binding info
- export info
- 其他信息如
LC_RPATH
、LC_VERSION_MIN_IPHONEOS
- 根据
LC_DYLD_INFO
、LC_DYLD_INFO_ONLY
、LC_DYLD_EXPORTS_TRIE
提供的 symbol 信息,存入_atoms
_atoms
。如果处理的是
.tbd
,关键是要获取两个信息:- 提供哪些 export symbol (如 Foundation 的
_NSLog
) - 该动态库还依赖哪些其他动态库(如 Foundation 依赖 CoreFoundation & libobjc)
.tbd
文件,parse 完(其实就是调 yaml 解析库解析了一遍)可以调接口(tapi::LinkerInterfaceFile
)直接得到结构化的信息。文章图片
Fat 文件
ld64 支持 fat 多架构的 Mach-O 解析。
在
InputFiles::makeFile
中可以看到取出目标架构的逻辑:文章图片
pthread 多线程处理
- 值得一提的是,考虑到不同 input files 的解析过程是互相独立的,ld64 使用 pthread 实现了一个 worker pool 来并发处理 input files(worker 数和 CPU 逻辑核数相同)
- pthread 逻辑参考
InputFiles::InputFiles
的构造函数
Resolver
把 input files 提供的所有 atoms 汇总关联成 atom graph 并处理,是「链接」的核心模块。文章图片
文章图片
实现上这里的逻辑也非常多,挑选核心流程来理解。
1. buildAtomList
这一步负责从解析好的 input files 中提取所有初始的 atom 并加入全局的
SymbolTable
中。遍历 inputFiles 并 parse
- 判断 input file 在 InputFiles::InputFiles 阶段是否已经 parse 完
- 已 parse 完,进行下一步
- 没 parse 完,尝试启动一个 pthread worker 处理 inputFile(执行逻辑和第一步「解析 Input」里一样),并
pthread_cond_wait
等待
.o
的 atoms
parse 阶段 ld64 已经从 object file 的 symbol table 和 relocation entries 中抽象出了 _atoms
,这一步挨个处理即可。Resolver::doAtom
处理单个 atom 的逻辑 :SymbolTable::add
(仅 global symbol & undefined external symbol,local symbol 不处理)
- 如果 name 没出现过,append 到
_indirectBindingTable
(定义见「概念铺垫 — Symbol Table」 - 如果 name 出现过,考虑 strong / weak 等 symbol definition 冲突解决策略
- 同步更新几张辅助 mapping 表
NameToSlot
、ContentToSlot
、ReferencesToSlot
- 如果 name 没出现过,append 到
- 遍历该 atom 的 fixup,尝试把 by-name / by-content 的 reference 转成 by-slot(直接指向对应
_indirectBindingTable
中对应的 atom)
.a
的 atoms
buildAtomList 阶段理论上完全不需要处理静态库,因为只有在后面 resolve undefined symbol 时才有可能查询静态库里包含的 symbol。但在以下两种情况下,这一步需要对静态库内的 .o
展开处理:- 如果该
.a
受-all_load
或-force_load
影响,强制 load 所有.o
- 如果 ld64 开启了
-ObjC
,强制 load 所有包含 ObjC class 和 category 的.o
(symbol name 包含_OBJC_CLASS_
、.objc_c
)
静态库 File 对象内部还会维护一个 MemberToStateMap,来记录
.o
的 load 状态加载
.dylib
的 atoms
buildAtomList 阶段不 add 动态库的 atoms,但会做一些额外的处理和校验,包括 bitcode bundle(__LLVM, __bundle
)、 Swift framework 依赖检查、Swift 版本检查等。### 2. resolveUndefines
此时
SymbolTable
中已经收集了 input files 中的大部分 atom,下一步需要把其中归属不明的 symbol 引用关联到对应的 symbol 定义上去。- 遍历
SymbolTable
中 undefined symbol (被 reference 的但是没有对应 atom 实体的 symbol definition) - 对每一个 undefined symbol ,尝试去静态库 & 动态库里找
- 静态库:前面提到静态库维护了一个 symbol name ->
.o
offset 的 mapping,因此要判断某个 symbol definition 是否属于该静态库只需要去这个 mapping 里查即可。如果查找到了,则解析对应的.o
、并把该.o
的 atoms 加入SymbolTable
中(.o
的加载逻辑参考前文 Parsing input files 和 buildAtomList) - 动态库:如果匹配到了某个动态库的 exported symbol,ld64 会为该 undefined atom 创建一个 proxy atom 表示对动态库中的引用。
- 静态库:前面提到静态库维护了一个 symbol name ->
- 如果静态库 & 动态库里都没找到,判断是否是
section$
、segment$
等 boundary atoms,并手动创建对应的 symbol definition - 处理 tentative symbol
- 如果
-undefined
不是 error(命令行参数控制发现 undefined symbol 时不报错)、或者命中了-U
(参数控制某些 undefined symbol 不报错),那么 ld64 会手动创建一个UndefinedProxyAtom
作为其 symbol definition
3. deadStripOptimize
接下来执行开启了
-dead_strip
后的逻辑。此时所有的 atom 和它们之间的引用关系已经记录在了 SymbolTable
中,可以把所有的 atom 抽象成 atom graph 来移除没有被引用到的无用 atom。- 初始化 root atoms
- entry point atom(如
_main
) - 所有被
-u
(强制加载某个 symbol,即使在静态库中)、-exported_symbols_list
、-exported_symbol
(在 output 中作为 global symbol 输出) 命中的 atoms - dyld 相关的几个 stub atom
- 所有被标记为 dont-dead-strip 的 atom(该 atom 对应的 section 在
.o
中被标记为了S_ATTR_NO_DEAD_STRIP
)
- entry point atom(如
- 从 root atoms 开始通过 fixup 遍历 atom graph,把它们能遍历到的 atoms 都标记为 live
- 移除 dead atom
遍历一遍 atoms,移除所有被合并的 atom。
(Symbol 的合并参考「概念铺垫 — Symbol」)
5. fillInInternalState
遍历一遍 atoms,把它们按照所属的 section 归类存放。
Passes/Optimizations 至此,我们已经拥有了写 output 所需要的完整的、有关联的信息了(sections & 对应的 atoms)。在输出之前,还需要执行多轮的「Pass」。一个 Pass 对应实现某一特定特性的代码逻辑,如
ld::passes::objc
ld::passes::stubs
ld::passes::dylibs
ld::passes::dedup::doPass
- ...
文章图片
pass 依次执行,个别 pass 之间也会强制要求执行的先后顺序以保证输出的正确性。
每个工程可以结合实际需求调整要执行的 pass。
Generate Output files 最后一步是输出 output files。ld64 的输出包括主 output 文件和其他辅助输出如 link map、dependency info 等。
文章图片
在正式输出前,ld64 还执行了一些其他操作,包括:
- ...
synthesizeDebugNotes
buildSymbolTable
generateLinkEditInfo
buildChainedFixupInfo
- ...
buildSymbolTable
负责构建 output file 中的 symbol table。「概念铺垫 — Symbol」中提到每个 symbol 在 link 阶段有自己的 visibility,用来控制 link 时对其他文件的可见性。同理,在 link 结束后输出的 Mach-O 中这些 symbol 现在隶属于一个新的文件,此时它们的 visibility 要被 ld64 依据各种处理策略来重新调整:- 前文提到的被标记为 private extern 的 symbol,这一步被转换为 local symbol
- ld64 也提供了多种参数来控制这一行为,如
-reexport-lx
、-reexport_library
、-reexport_framework
(指定 lib 的 global symbol 在 output 中继续为 global)、-hidden-lx
(指定 lib 中的 symbol 在 output 中转为 hidden)
FinalSection
数组愉快地去写 output file 了,大致逻辑如下:- 开辟一块内存,维护一个当前写入位置的 offset 指针
- 遍历
FinalSection
数组
- 遍历 atoms
- 如果是动态库创建的 proxy atom,跳过(不占用输出文件的空间)
- 把 atom content 写入当前 offset
- 遍历 fixups(
applyFixUps
),根据 fixup 的类型修正 atom content 对应位置的内容
- 遍历 atoms
-l
、 -framework
等 lib 依赖也能让 linker 正常工作的机制。比如:
- 某个源文件声明依赖了
#import
- link 时不指定
-framework AppKit
- 编译生成的
.o
的LC_LINKER_OPTION
中带有-framework AppKit
- 某个源文件声明了
#import
/usr/include/module.modulemap
内容
module zlib [system] [extern_c] {
header "zlib.h"
export *
link "z"
}
- link 时不指定
-lz
- 编译生成的
.o
的LC_LINKER_OPTION
中带有-lz
.o
时,解析 import,把依赖的 framework 写入最后 Mach-O 里的 LC_LINKER_OPTION
(存储了对应的 -framework XXX
信息)文章图片
要注意的是,开启 Clang module 时(
-fmodules
)自动开启 auto linking 。可以用 -fno-autolink
主动关闭。-ObjC
的由来
前面提到开启了 -ObjC
后,ld64 会在解析符号 search lib 时强制加载每个静态库内包含 ObjC class 和 category 的 .o
。这么做的原因是什么呢?经试验可发现:
- ObjC 的 class 定义对应 symbol 的 visibility 为
global
(自己定义、link 时外部文件可见) - ObjC 的 class 调用对应 symbol 的 visibility 为
undefined external
(外部定义、需要 link 时 fixup) - ObjC 的 method 定义对应 symbol 的 visibility 为
local
(对外部不可见) - ObjC 的 method 调用不会生成 symbol
ClassA
& ClassB
:
// ClassA.m#import "ClassB.h"@implementation ClassA- (void)methodA
{
[[ClassB new] methodB];
}@end// ClassB.m@implementation ClassB- (void)methodB
{}@end
编译后,
ClassA.o
:- global symbol:...
- local symbol:...
- undefined external symbol:
_OBJC_CLASS_$_ClassB
ClassB.o
:- global symbol:
_OBJC_CLASS_$_ClassB
- local symbol:
-[ClassB methodB]
- undefined external:...
_OBJC_CLASS_$_ClassB
这个对 ClassB 类本身的 reference,根本没有 -[ClassB methodB]
。这样的话,按照 ld64 正常的解析逻辑,既不会因为 ClassA
中对 methodB
的调用去寻找 ClassB.m
的定义(压根没有生成 undefined external
)、即使想找,ClassB
也没有暴露这个 method 的 symbol (local symbol 对外部文件不可见)。既然如此,ObjC 的 method 定义为什么不会被 ld64 认为是 dead code 而 strip 掉呢?
其实是因为 ObjC 的 class 定义会间接引用到它的 method 定义。比如上面
ClassB
的例子中,atom 之间的依赖关系如下:_OBJC_CLASS_$_ClassB
-> __OBJC_CLASS_RO_$_ClassB
->__OBJC_$_INSTANCE_METHODS_ClassB
-> -[ClassB methodB]
只要这个 class 定义被引用了,那么它的所有 method 定义也会被一起认为是 live code 而保留下来。
再看看引入 Category 后的情况:
- 假设 B 定义了
ClassB
和methodB
- C 是 B 的 category,定义了
ClassB
的methodBFromCategory
- A 引用了
ClassB
和methodB
、methodBFromCategory
- 因为 A 引用了 B 的 ClassB,所以 B 要被 ld64 加载。
- 虽然 A 引用了 C 的
methodBFromCategory
,但 A 没有解析methodBFromCategory
这个符号的需求(没生成),因此 ld64 不需要加载 C。
methodBFromCategory
定义必须被 ld64 link 进来。这里需要分两种情况:- 如果 C 在主工程中,ld64 需要直接解析 C 生成的 object file,并生成如下 atom 依赖:
objc-cat-list
-> __OBJC_$_CATEGORY_ClassB_$_SomeCategory
->
__OBJC_$_CATEGORY_INSTANCE_METHODS_ClassB_$_SomeCategory
->-[ClassB(SomeCategory) methodBFromCategory]
其中
objc-cat-list
表示所有 ObjC 的 categories,在 dead code strip 初始阶段被标记为 live,因此 methodBFromCategory
会被 link 进 executable 而不被裁剪。- 如果 C 被封装在一个静态库里,link 时 ld64 没有动机去加载 C,
methodBFromCategory
没有被 link 进 executable,导致最终运行时ClassB
没有加载该 category、执行时错误。
-ObjC
这个开关,保证静态库中单独定义的 ObjC category 被 link 进最终的 output 中。现在的 Xcode 中一般默认都开启了
-ObjC
,但这种为了兼容 category 而暴力加载静态库中所有 ObjC class 和 category 的实现并不是最完美的方案,因为可能因此在 link 阶段加载了许多本不需要加载的 ObjC class。理论上我们可以通过人为在 category 定义和引用之间建立引用关系来让 ld64 在不开启 -ObjC
的情况下也能加载 category,比如 IGListKit 就曾尝试手动注入一些 weak 的 dummy 变量(PR https://github.com/Instagram/...) ,但这种做法为了不劣化也会带来一定维护成本,因此也需要权衡。ld64 中对
-ObjC
的处理可参考 src/ld/parsers/archive_file.cpp
:bool File::forEachAtom(ld::File::AtomHandler& handler) const
{
bool didSome = false;
if ( _forceLoadAll || _forceLoadThis ) {
// call handler on all .o files in this archive
...
}
else if ( _forceLoadObjC ) {
// call handler on all .o files in this archive containing objc classes
for (const auto& entry : _hashTable) {
if ( (strncmp(entry.first, ".objc_c", 7) == 0) || (strncmp(entry.first, "_OBJC_CLASS_$_", 14) == 0) ) {
const Entry* member = (Entry*)&_archiveFileContent[entry.second];
MemberState& state = this->makeObjectFileForMember(member);
char memberName[256];
member->getName(memberName, sizeof(memberName));
didSome |= loadMember(state, handler, "-ObjC forced load of %s(%s)\n", this->path(), memberName);
}
}
// ObjC2 has no symbols in .o files with categories but not classes, look deeper for those
const Entry* const start = (Entry*)&_archiveFileContent[8];
const Entry* const end = (Entry*)&_archiveFileContent[_archiveFilelength];
...
}
...
}
六、其他 调试向的命令行参数 ld64 也提供了丰富的参数供开发者查询其执行过程,可以在 mac 上通过
man ld
查看 Options for introspecting the linker 一栏-print_statistics
打印 ld64 各大步骤的耗时分布。
ld total time: 2.26 seconds
option parsing time:6.9 milliseconds (0.3%)
object file processing:0.1 milliseconds (0.0%)
resolve symbols: 2.24 seconds
build atom list:0.0 milliseconds (0.0%)
passess:6.2 milliseconds (0.2%)
write output:10.4 milliseconds (0.4%)
-t
打印 ld64 加载的每一个
.o
.a
.dylib
。-why_load xxx
打印
.a
中 .o
被加载的原因(即什么 symbol 被需要)。-ObjC forced load of bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTHomeTab/libCommon.a(ArticleTabBarStyleNewsListScreenshotsProvider_IMP.o)
-ObjC forced load of bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTHomeTab/libCommon.a(TTExploreMainViewController.o)
-ObjC forced load of bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTHomeTab/libCommon.a(TTFeedCollectionViewController.o)
-ObjC forced load of bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTHomeTab/libCommon.a(TTFeedCollectionFollowListCell.o)
....
_dec_8i40_31bits forced load of external/TTAudio/Vendor/libopencore-amrnb.a(d8_31pf.o)
_decode_2i40_11bits forced load of external/TTAudio/Vendor/libopencore-amrnb.a(d2_11pf.o)
_decode_2i40_9bits forced load of external/TTAudio/Vendor/libopencore-amrnb.a(d2_9pf.o)
-why_live xxx
打印开启
-dead_strip
后,某个 symbol 的 reference chain(即不被 strip 的原因)比如
-why_live _OBJC_CLASS_$_TTNewUserHelper
:_OBJC_CLASS_$_TTNewUserHelper from external/TTVersionHelper/ios-arch-iphone/libTTVersionHelper_TTVersionHelper_awesome_ios.a(TTNewUserHelper.o)
objc-class-ref from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTPrivacyAlertManager/libNews.a(TTPrivacyAlertManager.swift.o)
+[TTDetailLogManager createLogItemWithGroupID:] from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailLogManager.o)
__OBJC_$_CLASS_METHODS_TTDetailLogManager from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailLogManager.o)
__OBJC_METACLASS_RO_$_TTDetailLogManager from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailLogManager.o)
_OBJC_METACLASS_$_TTDetailLogManager from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailLogManager.o)
_OBJC_CLASS_$_TTDetailLogManager from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailLogManager.o)
objc-class-ref from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/LMCoreKitTTAdapter/libNews.a(LMDetailTechnicalLoggerImpl.o)
___73-[TTDetailFetchContentManager fetchDetailForArticle:priority:completion:]_block_invoke from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailFetchContentManager.o)
-[TTDetailFetchContentManager fetchDetailForArticle:priority:completion:] from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailFetchContentManager.o)
__OBJC_$_INSTANCE_METHODS_TTDetailFetchContentManager from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailFetchContentManager.o)
__OBJC_CLASS_RO_$_TTDetailFetchContentManager from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailFetchContentManager.o)
_OBJC_CLASS_$_TTDetailFetchContentManager from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTDetail/libCommon.a(TTDetailFetchContentManager.o)
objc-class-ref from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/BDAudioBizTTAdaptor/libNews.a(TTAudioFetchableImp.o)
objc-class-ref from bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/BDAudioBizTTAdaptor/libNews.a(TTAudioFetchableImp.o)
-map
(linkmap)输出 linkmap 到指定路径,包含所有 symbols 和对应地址的 map 。
# Path: /Users/bytedance/NewsInHouse_bin
# Arch: x86_64# Object files:
...
[3203] bazel-out/ios-x86_64-min10.0-applebin_ios-ios_x86_64-dbg-ST-7bf874b56ea0/bin/Module/TTHomeTab/libCommon.a(TTFeedActivityView.o)
...# Sections:
# AddressSizeSegmentSection
0x1000040000x0D28B292__TEXT__text
0x10D28F2920x00011586__TEXT__stubs
...
0x10D70B5E80x00346BE0__DATA__cfstring
0x10DA521C80x00032170__DATA__objc_classlist
...# Symbols:
# AddressSizeFileName
0x1000045900x00000020[8] -[NSNull(Addition) boolValue]
...
0x1117EE0C60x00000027[4282] literal string: -[TTFeedGeneralListView skipTopHeight]
...
0x1104B44300x00000028[22685] _OBJC_METACLASS_$_MQPWebService
0x1104B44580x00000028[22685] _OBJC_CLASS_$_APayH5WapViewToolbar
...
0x1114A9CD40x0000005C[ 10] GCC_except_table0
0x1114A9D300x00000028[ 14] GCC_except_table12
...
<>0x00000008[3269] _kCoverAcatarMargin
<>0x00000008[3269] _kCoverTitleMargin
...
LTO — Link Time Optimization LTO 是一种链接期全模块级别代码优化的技术。开启 LTO 后 ld64 会借助 libLTO 来实现相关功能。关于 ld64 处理 LTO 的机制后续会单独另写一篇文章介绍。
结语 本文从源码角度分析了 ld64 的主体工作原理,实际应用中工程可结合自身需求对 ld64 进行定制来修复特定问题或者实现特定功能。本文也是系列的第一章内容,后续会带来更多静态链接器的介绍,包括 zld,lld,mold 等,敬请期待。
参考资料
- https://opensource.apple.com/...
- https://opensource.apple.com/...
- https://github.com/aidansteel...
就是现在!客户端/前端/服务端/端智能算法/测试开发 面向全球范围招聘!一起来用技术改变世界,感兴趣请联系 chenxuwei.cxw@bytedance.com,邮件主题 简历-姓名-求职意向-期望城市-电话。
推荐阅读
- 深入理解Go之generate
- 2020-04-07vue中Axios的封装和API接口的管理
- iOS中的Block
- 【1057快报】深入机关,走下田间,交通普法,共创文明
- 生发知识,带你深入了解
- 记录iOS生成分享图片的一些问题,根据UIView生成固定尺寸的分享图片
- 深入理解|深入理解 Android 9.0 Crash 机制(二)
- 2019-08-29|2019-08-29 iOS13适配那点事
- 深入浅出谈一下有关分布式消息技术(Kafka)
- Hacking|Hacking with iOS: SwiftUI Edition - SnowSeeker 项目(一)