Numpy使用
【Numpy使用】layout: post
title: Numpy使用
categories: Python
description: Numpy使用
keywords: Numpy
url: https://lichao890427.github.io/ https://github.com/lichao890427/
Python NumPy使用
基本用法
??NumPy是python的多维数组运算库,NumPy中维度数称为rank,维度称为axe,如[1,2,3]是一维数组。NumPy数组类为ndarray,它的重要属性有:
ndarray.ndim 维度数
ndarray.shape 维度(n,m)
ndarray.size 元素数
ndarray.dtype 元素类型
ndarray.itemsize 元素大小
ndarray.data 原始数据
import numpy as np
a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0,1,2,3,4],
[ 5,6,7,8,9],
[10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
创建数组
a = np.array([2,3,4])
b = np.array([(1.5,2,3), (4,5,6)])
>>> np.zeros( (3,4) )
array([[ 0.,0.,0.,0.],
[ 0.,0.,0.,0.],
[ 0.,0.,0.,0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )# dtype can also be specified
array([[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]],
[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )# uninitialized, output may vary
array([[3.73603959e-262,6.02658058e-154,6.55490914e-260],
[5.30498948e-313,3.14673309e-307,1.00000000e+000]])
>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )# it accepts float arguments
array([ 0. ,0.3,0.6,0.9,1.2,1.5,1.8])
>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )# 9 numbers from 0 to 2
array([ 0.,0.25,0.5 ,0.75,1.,1.25,1.5 ,1.75,2.])
>>> x = np.linspace( 0, 2*pi, 100 )# useful to evaluate function at lots of points
>>> f = np.sin(x)
基本操作
a = np.array( [20,30,40,50] )
b = np.arange( 4 ) # array([0, 1, 2, 3])
c = a - b # array([20, 29, 38, 47])
b**2 # 乘方 array([0, 1, 4, 9])
10*np.sin(a) # array([ 9.12945251, -9.88031624,7.4511316 , -2.62374854])
a<35 # array([ True, True, False, False], dtype=bool)
矩阵乘法使用dot函数完成
>>> A = np.array( [[1,1],
...[0,1]] )
>>> B = np.array( [[2,0],
...[3,4]] )
>>> A*B# elementwise product
array([[2, 0],
[0, 4]])
>>> A.dot(B)# matrix product
array([[5, 4],
[3, 4]])
>>> np.dot(A, B)# another matrix product
array([[5, 4],
[3, 4]])
非数组操作提供在ndarray类中
>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,0.34556073,0.39676747],
[ 0.53881673,0.41919451,0.6852195 ]])
>>> a.sum()
2.5718191614547998
>>> a.min()
0.1862602113776709
>>> a.max()
0.6852195003967595
通用函数如sin cos ex
>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.,2.71828183,7.3890561 ])
>>> np.sqrt(B)
array([ 0.,1.,1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,0.,6.])
推荐阅读
- 宽容谁
- 我要做大厨
- 增长黑客的海盗法则
- 画画吗()
- 2019-02-13——今天谈梦想()
- 远去的风筝
- 三十年后的广场舞大爷
- 叙述作文
- 20190302|20190302 复盘翻盘
- 学无止境,人生还很长