030-数据结构与算法|一文搞掂十大经典排序算法
一文搞掂十大经典排序算法 今天整理一下十大经典排序算法。
1、冒泡排序 ——越小的元素会经由交换慢慢“浮”到数列的顶端
算法演示
文章图片
算法步骤
- 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
- 针对所有的元素重复以上的步骤,除了最后一个;
- 重复步骤1~3,直到排序完成。
def bubbleSort(arr):
for i in range(1, len(arr)):
for j in range(0, len(arr)-i):
if arr[j] > arr[j+1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
return arr
2、选择排序 —— 最小的出来排第一,第二小的出来排第二…
算法演示
算法步骤
- 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
- 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
- 重复第二步,直到所有元素均排序完毕。
def selectionSort(arr):
for i in range(len(arr) - 1):
# 记录最小数的索引
minIndex = i
for j in range(i + 1, len(arr)):
if arr[j] < arr[minIndex]:
minIndex = j
# i 不是最小数时,将 i 和最小数进行交换
if i != minIndex:
arr[i], arr[minIndex] = arr[minIndex], arr[i]
return arr
3、简单插入排序 ——通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
算法演示
文章图片
算法步骤
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
- 重复步骤2~5。
def insertionSort(arr):
for i in range(len(arr)):
preIndex = i-1
current = arr[i]
while preIndex >= 0 and arr[preIndex] > current:
arr[preIndex+1] = arr[preIndex]
preIndex-=1
arr[preIndex+1] = current
return arr
4、希尔排序 ——希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。
算法演示
文章图片
算法步骤
- 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
- 按增量序列个数 k,对序列进行 k 趟排序;
- 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
def shellSort(arr):
import math
gap=1
while(gap < len(arr)/3):
gap = gap*3+1
while gap > 0:
for i in range(gap,len(arr)):
temp = arr[i]
j = i-gap
while j >=0 and arr[j] > temp:
arr[j+gap]=arr[j]
j-=gap
arr[j+gap] = temp
gap = math.floor(gap/3)
return arr
5、归并排序 ——建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
算法演示
算法步骤
- 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
- 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
- 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
- 重复步骤 3 直到某一指针达到序列尾;
- 将另一序列剩下的所有元素直接复制到合并序列尾。
def mergeSort(arr):
import math
if(len(arr)<2):
return arr
middle = math.floor(len(arr)/2)
left, right = arr[0:middle], arr[middle:]
return merge(mergeSort(left), mergeSort(right))def merge(left,right):
result = []
while left and right:
if left[0] <= right[0]:
result.append(left.pop(0))
else:
result.append(right.pop(0));
while left:
result.append(left.pop(0))
while right:
result.append(right.pop(0));
return result
6、快速排序 ——快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。 快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。
算法演示
算法步骤
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
def quickSort(arr, left=None, right=None):
left = 0 if not isinstance(left,(int, float)) else left
right = len(arr)-1 if not isinstance(right,(int, float)) else right
if left < right:
partitionIndex = partition(arr, left, right)
quickSort(arr, left, partitionIndex-1)
quickSort(arr, partitionIndex+1, right)
return arrdef partition(arr, left, right):
pivot = left
index = pivot+1
i = index
whilei <= right:
if arr[i] < arr[pivot]:
swap(arr, i, index)
index+=1
i+=1
swap(arr,pivot,index-1)
return index-1def swap(arr, i, j):
arr[i], arr[j] = arr[j], arr[i]
7、堆排序 ——利用堆这种数据结构所设计的一种排序算法
算法演示
算法步骤
- 创建一个堆 H[0……n-1];
- 把堆首(最大值)和堆尾互换;
- 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
- 重复步骤 2,直到堆的尺寸为 1。
def buildMaxHeap(arr):
import math
for i in range(math.floor(len(arr)/2),-1,-1):
heapify(arr,i)def heapify(arr, i):
left = 2*i+1
right = 2*i+2
largest = i
if left < arrLen and arr[left] > arr[largest]:
largest = left
if right < arrLen and arr[right] > arr[largest]:
largest = rightif largest != i:
swap(arr, i, largest)
heapify(arr, largest)def swap(arr, i, j):
arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):
global arrLen
arrLen = len(arr)
buildMaxHeap(arr)
for i in range(len(arr)-1,0,-1):
swap(arr,0,i)
arrLen -=1
heapify(arr, 0)
return arr
8、计数排序 ——作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。
算法演示
算法步骤
- 找出待排序的数组中最大和最小的元素
- 统计数组中每个值为i的元素出现的次数,存入数组C的第i项
- 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
- 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1
def countingSort(arr, maxValue):
bucketLen = maxValue+1
bucket = [0]*bucketLen
sortedIndex =0
arrLen = len(arr)
for i in range(arrLen):
if not bucket[arr[i]]:
bucket[arr[i]]=0
bucket[arr[i]]+=1
for j in range(bucketLen):
while bucket[j]>0:
arr[sortedIndex] = j
sortedIndex+=1
bucket[j]-=1
return arr
9、桶排序 ——桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。
算法演示
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9ybEGKPU-1633970885002)(C:\Users\LANWEI~1\AppData\Local\Temp\1633970398356.png)]
文章图片
算法步骤
- 设置一个定量的数组当作空桶;
- 遍历输入数据,并且把数据一个一个放到对应的桶里去;
- 对每个不是空的桶进行排序;
- 从不是空的桶里把排好序的数据拼接起来。
function bucketSort(arr, bucketSize) {if (arr.length === 0) {return arr;
}
var i;
var minValue = https://www.it610.com/article/arr[0];
var maxValue = arr[0];
for (i = 1;
i < arr.length;
i++) {if (arr[i] < minValue) {minValue = arr[i];
// 输入数据的最小值
} else if (arr[i]> maxValue) {maxValue = https://www.it610.com/article/arr[i];
// 输入数据的最大值
}
}
// 桶的初始化
var DEFAULT_BUCKET_SIZE = 5;
// 设置桶的默认数量为5
bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;
var buckets = new Array(bucketCount);
for (i = 0;
i < buckets.length;
i++) {buckets[i] = [];
}
// 利用映射函数将数据分配到各个桶中
for (i = 0;
i < arr.length;
i++) {buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
}
arr.length = 0;
for (i = 0;
i < buckets.length;
i++) {insertionSort(buckets[i]);
// 对每个桶进行排序,这里使用了插入排序
for (var j = 0;
j < buckets[i].length;
j++) {arr.push(buckets[i][j]);
}
}
return arr;
}
10、基数排序 基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。
算法演示
【030-数据结构与算法|一文搞掂十大经典排序算法】
文章图片
算法步骤
- 取得数组中的最大数,并取得位数;
- arr为原始数组,从最低位开始取每个位组成radix数组;
- 对radix进行计数排序(利用计数排序适用于小范围数的特点);
var counter = [];
function radixSort(arr, maxDigit) {var mod = 10;
var dev = 1;
for (var i = 0;
i < maxDigit;
i++, dev *= 10, mod *= 10) {for(var j = 0;
j < arr.length;
j++) {var bucket = parseInt((arr[j] % mod) / dev);
if(counter[bucket]==null) {counter[bucket] = [];
}
counter[bucket].push(arr[j]);
}
var pos = 0;
for(var j = 0;
j < counter.length;
j++) {var value = https://www.it610.com/article/null;
if(counter[j]!=null) {while ((value = counter[j].shift()) != null) {arr[pos++] = value;
}
}
}
}
return arr;
}
推荐阅读
- JAVA(抽象类与接口的区别&重载与重写&内存泄漏)
- Docker应用:容器间通信与Mariadb数据库主从复制
- 《真与假的困惑》???|《真与假的困惑》??? ——致良知是一种伟大的力量
- 第326天
- Shell-Bash变量与运算符
- 逻辑回归的理解与python示例
- Guava|Guava RateLimiter与限流算法
- 我和你之前距离
- CGI,FastCGI,PHP-CGI与PHP-FPM
- 原生家庭之痛与超越